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Patient-specific medical simulation holds the promise of determining tailored medical
treatment based on the characteristics of an individual patient (for example, using a geno-
typic assay of a sequence of DNA). Decision-support systems based on patient-specific
simulation can potentially revolutionize the way that clinicians plan courses of
treatment for various conditions, ranging from viral infections to arterial abnormalities.
Basing medical decisions on the results of simulations that use models derived from data
specific to the patient in question means that the effectiveness of a range of potential
treatments can be assessed before they are actually administered, preventing the patient
from experiencing unnecessary or ineffective treatments. We illustrate the potential for
patient-specific simulation by first discussing the scale of the evolving international grid
infrastructure that is now available to underpin such applications. We then consider two
case studies, one concerned with the treatment of patients with HIV/AIDS and the
other addressing neuropathologies associated with the intracranial vasculature. Such
patient-specific medical simulations require access to both appropriate patient data and
the computational resources on which to perform potentially very large simulations.
Computational infrastructure providers need to furnish access to a wide range of different
types of resource, typically made available through heterogeneous computational grids,
and to institute policies that facilitate the performance of patient-specific simulations on
those resources. To support these kinds of simulations, where life and death decisions are
being made, computational resource providers must give urgent priority to such jobs,
for example by allowing them to pre-empt the queue on a machine and run straight away.
We describe systems that enable such priority computing.

Keywords: patient specific; HIV; resistance; binding; blood flow; urgent computing
On
for

*A
Phil. Trans. R. Soc. A (2008) 366, 3199–3219

doi:10.1098/rsta.2008.0100
Published online 23 June 2008
e contribution of 12 to a Theme Issue ‘The virtual physiological human: building a framework
computational biomedicine I’.

uthor for correspondence (p.v.coveney@ucl.ac.uk).

3199 This journal is q 2008 The Royal Society



S. K. Sadiq et al.3200
1. Introduction

The exponential increase of computational power, facilitated by the advance of
stand-alone ‘island’ high-performance computational (HPC) resources, has
allowed the proliferation of new research in many fields. The development of
heterogeneous supercomputing grid technology and infrastructure has provided a
‘step jump’ relative to single island resources for a wide range of problems. Not
only is such computation advantageous from widespread research perspectives, it
can now be used to address, in real time, the outcome of many diverse emergency
situations, such as the development and impact of hurricanes and earthquakes
(Manos et al. 2008).

In the biological domain, high-performance computation has been used in a
research capacity to investigate the interactions at many spatio-temporal scales
and extensively with regard to biomolecular function and its interference
due to disease. These recent advances in computing mean that for the
first time deductive computational modelling can be envisaged in more than a
scientific research capacity so far as biomedicine is concerned. It is our claim in
this paper that the application of large-scale computation to offer real-time
support for clinical decision-making is becoming feasible. Furthermore, the
ability to use the distinctive biomedical data available from a patient to
optimize patient-specific treatment using simulation means that, in future,
the effectiveness of a range of potential treatments could be assessed before
they are actually administered, preventing the patient from experiencing
unnecessary or ineffective treatments. This will provide a substantial benefit
to the medical world and hence to the quality of life of human beings.
Additionally, in the context of research and development, it will reduce
both the bench to bedside time for drug development and the need for
animal testing. We define patient-specific simulation as a deductive computa-
tional simulation that uses biomedical data, unique to a given patient,
to determine any distinctive biophysical or biochemical property relating to
that patient.

In this paper, we discuss the motivations for conducting patient-specific
computational simulations that confer real-time clinical advantage, as well
as the technological infrastructure that needs to be in place to realize such a
goal. To illustrate the diversity of this new paradigm, we outline two very
different case studies by means of which we discuss the use of the patient-
specific approach and the limitations of current computational infra-
structure. We do not pretend to provide an exhaustive overview. In these
case studies, we have made inroads that furnish the opportunity to enhance
clinical treatment, directly following diagnosis: first in the antiretroviral
inhibitor (ARV) treatment of HIV/AIDS and second in the identification
and subsequent treatment of abnormal blood flow in the brain. While grid
technology allows such novel studies to be performed, several issues arise
with regard to the optimal administration of computational resources. In the
light of the prioritization and ‘urgent’ status that some computations
require in order to meet the needs of the clinical environment, we discuss
the ramifications of urgent computing for the evolution of grid technology
and high-performance computing.
Phil. Trans. R. Soc. A (2008)
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2. The basis for patient-specific simulation approaches

Traditional medical practice requires a physician to use knowledge, judgement
and experience to decide on the course of treatment best suited for an individual
patient’s condition. While the training and experience of the physician hones an
ability to decide the most effective treatment for a particular ailment from the
range available, this decision-making process often does not take into account all
the data potentially available. For example, in the treatment of HIV/AIDS, the
complex variation inherent within the data generated by the analysis of viral
genotype resulting in a prediction of phenotype (in terms of viral sensitivity to a
number of treatments) makes the selection of treatment for a particular patient
based on these predictions fairly subjective.

One step up from the physician as the sole decision-maker is the use of so-called
expert systems to predict a suitable course of treatment for a patient. Often such
systems are developed using knowledge engineering methodologies or data mining
techniques predicated on statistical inference. These use induction to generate
rules for a given situation based on the data present in one or more relational
databases. Further support for clinical decision-making is likely to become
available from the emerging field of patient-specific medical simulation, being
pursued by the Virtual Physiological Human initiative (Viceconti et al. 2007) and
the International Physiome Project (Bassingthwaighte 2000) among others.

Patient-specific medical simulation holds the promise of evaluating tailored
medical treatment based on the particular characteristics of an individual patient
and/or an associated pathogen. Approaches using simulation are based on the
development of theories and models from which deductions can be made, as is the
standard approach in the physical sciences and engineering. In reality, biology
and medicine are still too poorly understood for deductive approaches to replace
inductive ones so, in the foreseeable future, both will continue to sit side by side
(Coveney & Fowler 2005).

Inductive decision-support systems that incorporate deductive patient-specific
simulation therefore have the potential to revolutionize the way that clinicians
plan courses of treatment for various conditions. While the details vary widely
between medical conditions, several basic elements are common to all fields of
patient-specific medical simulation in support of clinical decision-making. Data
are obtained from the patient concerned, for example from an angiography scan or
genotypic assay, which are used to construct a computational model. This model is
then used to perform a complex workflow of simulations of a proposed course of
treatment, for example molecular dynamics simulations of drugs interacting with
a range of viral proteins, and the results of the simulations are then interpreted to
assess the efficacy of the treatment under consideration. The use of simulation
to assess a range of possible treatments based on the data derived from the patient
who is to be treated will give the physician the ability to choose a treatment based
on prior knowledge of how the patient will respond to it.

Such patient-specific medical simulations require access to both appropriate
patient data and the infrastructure on which to perform potentially very large
numbers of complex and demanding simulations. Computational infrastructure
providers need to furnish access to a wide range of different types of resources,
typically made available through a computational grid, and to institute policies
that facilitate the performance of patient-specific simulations on those resources.
Phil. Trans. R. Soc. A (2008)
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In order to make patient-specific simulations useful to a physician, results need
to be obtained within a clinically useful time frame that could range from
instantaneously to a few weeks. In addition to the expediency of access to patient
data, consideration must also be given to policy and procedures that will ensure
the maintenance of patient confidentiality.
3. Infrastructure and technology required for patient-specific simulation

For applications such as the patient-specific technologies discussed in this paper,
in which a number of computationally intensive simulations may need to be
performed routinely for thousands of patients, exploiting the power of large-scale
grid computing will be essential. We define grid computing (Coveney 2005) as
distributed computing conducted transparently across the multiple adminis-
trative domains.

For such an enterprise to succeed, grid computing will need to focus not only on
the provision of large island compute machines but also on the performance
characteristics of the networks connecting them. The process of clinical
decision-making, requiring access to relevant data, timely availability of
computational results, visualization, data storage, etc., needs an infrastructure
that can facilitate the transfer of many gigabytes of data within clinically relevant
time frames.

Clinicians who require interactive access to machines, for example for steering
and visualization, as well as cross-site applications, also need to be able to
schedule time on specific resources—both compute and networking—as well as
tools to easily co-reserve them, so that the required resources are available when
needed. This in turn leads to a demand on resource providers to implement
policies and tools that allow such reservations to be made as and when required,
so that such methodologies can be incorporated into a user’s normal research
activities, rather than just providing such facilities on an ad hoc basis. Moreover,
the resources provided by a single grid may not always be sufficiently powerful or
appropriate to run large-scale distributed models, and resources provided by
multiple grids have to be federated in order for a particular investigation to be
conducted. This compounds the problems of interactive resource use; each grid
has its own policies and systems for making advanced reservations, if it has any
at all. Additionally, the high-performance network provision between grids may
also be limited or non-existent. Nevertheless, such obstacles must be overcome to
make efficient use of the available federated systems.

(a ) Resource reservation and urgent computing

The on-demand availability of networks, high-performance computers, data
storage facilities and visualization engines in this ‘urgent computing’ scenario is
imperative if the tools described in this paper are to be used in the day-to-day
clinical decision-making process. Grid applications such as the Highly Available
Resource Co-allocator (HARC; MacLaren 2007) and Grid Universal Remote
(Yoshimoto et al. 2005) allow the co-allocation of separate resources to achieve
these grid-based simulations when needed, so that for example patient-specific
medical simulations can be booked in advance much like the scheduling of
pathology laboratory tests. On the other hand, infrastructures such as Special
Phil. Trans. R. Soc. A (2008)
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PRiority and Urgent Computing Environment (SPRUCE; Beckman et al. 2007)
support urgent computing requirements such that time-critical simulations can
be run quickly.

HARC is an open-source system that allows users to reserve multiple
distributed resources in a single step. These resources can be of different types,
including multiprocessor machines and visualization engines, dedicated network
connections, storage, the use of a scientific or clinical instrument, and so on.
HARC can be used to allocate resources for use at the same time, for example,
within a scenario in which a clinical instrument is transferring data over a high-
speed network link to remote computational resources for a real-time processing.
It can also be used to reserve resources at different times, for the scheduling of
workflow applications. We envisage clinical scenarios where patient-specific
simulations can be timetabled in advance, via the booking of an instrument, the
reservation of network links and storage facilities, followed by high-end compute
resources to process data, and finally the use of visualization facilities to interpret
the data for critical clinical decisions to be made.

Currently, HARC can be used to book the computing resources and lightpaths
across networks based on Generalized Multiprotocol Label Switching with simple
topologies, such as a dedicated direct optical link between two geographically
separated computing resources. HARC is also designed to be extensible, so new
types of resources can be easily added; it is this that differentiates HARC from
other co-allocation solutions. There are multiple deployments of HARC in use
today, including the US TeraGrid, the EnLIGHTened testbed in the United
States, the regional North West Grid in England and the National Grid Service
(NGS) in the UK. We use HARC on a regular basis to make single and multiple
machine reservations, within which we are able to run numerous applications
including HemeLB (see §5a). The availability of resources for advance
reservation is dependent on individual site policy and site usage. For example,
some sites limit user batch jobs to a run time of 24 hours, which roughly
corresponds to the time a user would have to wait for an advance reservation slot
to become available. The recent version 2 release of HARC also has a feature that
allows users to find the ‘next available’ reservation slot. In the case where there is
a resource shortage, a different approach needs to be taken.

SPRUCE (Beckman et al. 2007) is an urgent computing platform that has been
developed to address the growing number of problem domains where critical
decisions must be made quickly with the aid of large-scale computation. SPRUCE
uses simple authentication mechanisms by means of transferable ‘right-of-way’
tokens. These tokens allow selected users to begin an urgent computing session on
a set of pre-defined resources, where they can request an elevated priority for jobs.
The computations can be run at different levels of urgency; for example, as a
‘next-to-run’ priority, such that the computation is run once a current job on
the machine completes, or ‘run immediately’, such that the existing jobs on the
system are removed, making way for ‘emergency’ computation in a pre-emptive
fashion, the most extreme form of urgent computing. In the context of the
cerebral blood flow study, the HemeLB code (§5a) has been used with SPRUCE
in a next-to-run fashion on the large-scale Lonestar cluster at the Texas
Advanced Computing Center (TACC), and demonstrated live on the show floor
at Supercomputing 2007, where real-time visualization and steering were used to
control HemeLB within an urgent computing session.
Phil. Trans. R. Soc. A (2008)
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(b ) Grid middleware

Within the last 5 years, much work has been done to enable the transparent
sharing of HPC resources via grids (Coveney 2005). The goal of grid computing is
to give users transparent, uniform access to resources including such high-
performance computing platforms owned and operated by disparate organiz-
ations that may have different security and access policies at an institutional
level, while at the same time giving reasonable security assurances to the people
and institutions making use of the grid.

Fundamental to allowing the inter-institutional sharing of resources in a grid
is the middleware that enables resources to be accessed in a consistent and
transparent way, essential to support the high volume of compute intensive
jobs that need to be run as part of patient-specific medical simulation. Several
different middleware technologies exist to facilitate the sharing of resources, the
most widespread being Globus (Foster 2006), gLite (Middleware, http://glite.
web.cern.ch/glite) and UNICORE (Almond & Snelling 1999). Many of these
software stacks are focused at the server-side resource providers, and take little
account of user needs.

The Application Hosting Environment (AHE; Coveney et al. 2007) that has
been developed in response to end-user concerns at the usability of grid
middleware features an interaction model based on scientific user applications
rather than user–resource interaction. Specifically, AHE provides a mechanism
to represent a scientific application as a stateful web service that a user interacts
with in order to run that application on a set of grid resources. AHE abstracts
much of the detail of interacting with remote grid resources from users, so that
they do not have to learn access mechanisms for each and every resource they
want to use. By providing a simple interface that sits on top of the lower level
middleware such as Globus and UNICORE, with which a user interacts when
running an application on the grid, AHE hides the complexities of the underlying
middleware deployed on remote resources. Indeed, since AHE can be used to
launch applications on a number of different middleware systems, it can be used
to provide a single interface to both local computational resources and federated
grid machines (Coveney et al. 2007). Importantly, it enables seamless
interoperability between federations of grids using Globus and UNICORE,
which otherwise would not interoperate.

(c ) Infrastructure

Until now grid computing applications have mostly made use of best-effort,
shared TCP/IP networks: the network has simply been the glue that holds the
middleware-enabled computational resources together. By contrast, by using
the switched optical networks, the networks themselves become schedulable,
‘first-class’ grid resources. These types of high Quality of Service (QoS) networks
form the basis of the next generation of more network-centric applications.
Lightpaths provide several features that are not achievable using regular,
production, best-effort networks, but which are needed for many high-
performance grid applications. These include higher bandwidth connections
(Hirano et al. 2006), user-defined networks and implementation of novel
protocols which all provide essentially contention-free, high QoS links. Such
low-latency, high-bandwidth links are ideal for the rapid shifting of large
Phil. Trans. R. Soc. A (2008)
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quantities of data from high-end resources to local data storage and data
processing facilities. Beyond that, however, they are ideal to support distributed
and/or interactive simulations. For example, the GENIUS project makes use of
a purpose-built dedicated 1 Gb sK1 lightpath network, spanning the UK and
USA, which is designed to culminate on a desktop workstation within the
National Hospital for Neurology and Neurosurgery (NHNN) at Queen’s Square,
London. Here it will be used by clinicians to interactively run, steer and visualize
HemeLB in real time on remote resources using the dedicated contention-free
lightpath network.
4. Case study 1: simulation-based decision support in HIV treatment

From the perspective of clinical medicine, there are two fundamental problems
that generate an imposing barrier in the quest to prescribe the most effective
treatment for patients infected with HIV. These stem from the innate genetic
instability of HIV, coupled with its rapid replication rate which, in the presence
of selective pressure exerted by ARVs, lead to the rapid emergence of mutations
associated with drug resistance. A range of viral proteins targeted by ARVs,
including the protease and reverse transcriptase enzymes, among others, develop
patterns of mutations to different drugs or classes of drugs (Johnson et al. 2006).

One prevalent clinical problem remains the determination of which drug
regimen best treats a patient’s viral genotype. While genotypic assaying of
individuals infected with HIV is a standard procedure implemented to obtain
portions of the viral genome sequence (Snoek et al. 2005), the interpretation of
such information, given the complexity of emergent mutational patterns (Wu
et al. 2003), both in treatment-naive and treated individuals, often means that
clinicians have to resort to ‘decision-support’ software for assistance (Kantor
et al. 2001). Such decision-support applications use existing clinical databases as
well as phenotypic information based on the inhibition studies to infer the
susceptibility of a range of inhibitors to a particular viral sequence.

Moreover, even though an initially optimal drug regimen may be determined
through such a process, the mutational response to inhibitor treatment, as well as
predicting the future mutational pathway for a given genotype and a given
inhibitor, remain largely unsolved problems. Invariably, the effect of treatment is
the emergence of drug-resistant mutations that impair inhibitor efficacy, causing
a subsequent evolution of the viral genotype within the host and escape from
drug pressure, resulting in a rebound in viral load. Monitoring the viral load as a
marker of treatment efficacy leads to a re-evaluation of the optimal drug regimen
based on the evolved viral genotype, which can in turn lead to an alteration in
treatment. Unfortunately, evolution of the viral genotype may result in
mutational pathways that lead to multidrug-resistant viruses. The efficacy of
any decision-support software is ultimately dependent on the extent of available
clinical or phenotypic information relevant to a particular sequence. Given that
the vast majority of drug-resistant mutations are non-pleiotropic (Wu et al. 2003;
Johnson et al. 2006), a patient-specific viral genotype can be reduced to an
assessment of the amino acid sequence of key enzymatic proteins, such as the
protease and reverse transcriptase, for which a range of Food and Drug
Administration (FDA)-approved inhibitors have been developed.
Phil. Trans. R. Soc. A (2008)
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Drug-resistant mutations are especially pronounced in the case of the viral
protease. HIV-1 protease is a homodimer with C2-symmetry, composed of 99
amino acids in each chain (Wlodawer & Erickson 1993). Up to half of the amino
acid positions have been shown to tolerate mutation (Schinazi et al. 1997), while
the protease maintains a functional three-dimensional structure (Zoete et al.
2002). Alongside primary mutations that cause resistance, there are patterns
corresponding to the build up of several accessory mutations for which signific-
ant resistance may be exhibited only when several of these mutations are present
in the individual.

At the molecular level, it is the change in the binding affinity of enzyme–
inhibitor complexes across a range of mutants that provides a key measure
of the drug resistance afforded by such mutants. Binding affinities are deter-
minable via both experimental (Maschera et al. 1996; Velazquez-Campoy et al.
2001) and computational (Wang & Kollman 2001; Lepsik et al. 2004) means;
they have been reported for proteases and reverse transcriptases across a range
of inhibitors and deposited in a web-based database known as BindingDB
(Chen et al. 2001).

Unfortunately, the determination of drug-binding affinities by either
experimental or computational means is not trivial and has conventionally
taken far too long to be of immediate use in clinical response. Instead, binding
affinity studies are constrained to provide information only in retrospect, once
drug-resistant mutations have evolved in viral populations and have been
characterized clinically in the event of treatment failure. While such studies are
invaluable for optimizing treatment in clinical response to characterized
mutations, they are not informative about mutations that have not been
characterized, but which may exist in infected individuals. A gap therefore exists
between scientifically rigorous approaches that determine drug resistance at the
molecular level and their applicability in a real-time clinical environment to
confer support for the patient-specific treatment.

An attractive goal in the medical treatment of HIV is therefore the accurate
and fast determination of the binding affinity of a range of inhibitors for the
unique viral genotypic constitution of an infected individual. Such information, if
available on a clinically relevant time scale, would assist in the optimization of
treatment on a patient-specific basis. Furthermore, a tool that could use
molecular simulation-based free energy methods would provide the natural
scientific methodology for generating such data and assist in bridging the
molecular–clinical gap.

There are several requirements for a tool that can bridge this gap. First, it
should be predictive, while not purely based on inductive techniques that rely
solely on the existing clinical records. Second, it should be accurate when ranking
the susceptibility of inhibitors to a variety of viral genotypes. Furthermore, it
should be automated so that the clinician need not be concerned with the specific
methodology of a calculation and, finally, it should return its results on the
appropriate time scales (less than two weeks) to be of use in assisting with a
clinical response.

Such a ranking tool, provided it can meet these requirements, in principle
would be a stand-alone entity. However, integration within the existing decision-
support software to provide a combined inductive/deductive approach to
optimizing drug treatment at the molecular–clinical interface would be desirable.
Phil. Trans. R. Soc. A (2008)
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An example of where such a framework could be adopted is the ViroLab project
(Sloot et al. 2005). In addition to providing a common virtual environment for
the collective accessibility of a range of previously independent clinical cohorts,
one aim of ViroLab is to incorporate computational data at the molecular level,
complementing the existing clinical and phenotypic data. Any lack of significant
data that may exist for the interpretation of an optimal treatment against a
unique viral genotype may then be bridged by conducting a suitable
computational study on that particular genotype. The §4a describes the steps
we have made towards realizing such a tool that we call the binding affinity
calculator (BAC).

If we envisage a scenario in which automated molecular simulation, as
encapsulated by the BAC, is routinely used as a component of effective clinical
support, then on a global level this involves the simultaneous processing of data
from potentially thousands of patients, each of whom would require of the
order of 100 000 CPU hours in order to determine the optimal treatment, all
within a two-week time frame. The millions of CPU hours that would need to be
available over such a short time scale using current state-of-the-art computers
represent an urgent computing scenario along the lines of those discussed in §3a.
Urgent computing is thus an essential prerequisite for patient-specific molecular
simulation to deliver clinical impact.
(a ) Rapid and accurate ranking of binding free energy differences using
molecular simulation

Several methods exist for determining computational binding free energies
(Wang et al. 2001) ranging from accurate methods that are often overwhelmingly
computationally intensive to approximate methods that may not be sensitive
enough to discriminate slightly varying binding affinities. In the present context,
the molecular mechanics Poisson–Boltzmann solvent-accessible surface area
(MMPBSA) method appears very attractive (Wang & Kollman 2001) as no a
priori fitting to experimental data is required (Wan et al. 2005) while its
computing requirements are low compared with the exact methods that are 10
times more computationally intensive.

Previous studies on HIV-1 protease using the MMPBSA method have
highlighted the difficulties associated with attaining accurate absolute values of
binding (Lepsik et al. 2004) and have not been sensitive enough to ‘explicitly’
rank drug-resistant mutations (Wang & Kollman 2001). Furthermore, other
research has shown that changes in the configurational entropy of the system are
non-negligible in attaining accurate absolute free energy differences of binding
(Chang et al. 2007).

We have developed a robust and accurate methodology for determining both
the absolute and relative free energy differences of binding of inhibitors to the
HIV-1 protease using the MMPBSA method in molecular simulation (Stoica
et al. 2008). Using molecular dynamics simulations in explicit water alongside the
MMPBSA method, including entropic considerations from normal mode
analysis, it is possible to determine the absolute free energies of binding of the
protease inhibitor saquinavir to the wild-type, the G48V, L90M and G48V/
L90M mutants of HIV-1 protease. Furthermore, we explored the applicability of
the MMPBSA approach combined with the analysis of the entropic contribution
Phil. Trans. R. Soc. A (2008)
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in determining absolute free energies of binding as well as predictively and
accurately ranking drug-resistant mutants of the HIV-1 protease through an
alteration in the drug-binding affinity.

The full details of the method are reported in Stoica et al. (2008); however, in
summary, our method uses a long and robust multistage equilibration protocol
lasting 2 nanoseconds (ns) followed by a fully unrestrained production phase of
10 ns for single-trajectory MMPBSA calculations. This duration allows the
convergence of the free energies of binding, calculated via the MMPBSA method
including the contribution of changes in the configurational entropy upon
binding. A single calculation of this type currently takes 54 hours at an optimum
processor number of 32 CPUs; accounting for a further 20 hours for post-
processing on a cluster of serial CPUs, the resulting total turnaround time of
74 hours (approx. 3 days) is well within the time scale required to afford benefit
to clinical decision support.

We demonstrated that the inclusion of configurational entropy is required not
only to obtain accurate absolute values of binding but also to accurately rank
mutants of the HIV-1 protease with respect to the wild-type. In doing so, we
obtain an excellent correlation with experiment (figure 1), with correlation
coefficients of 0.96 and 0.81 with respect to experimental datasets e1 (Maschera
et al. 1996) and e2 (Ermolieff et al. 1997), respectively. These are remarkably
good considering that the correlation coefficient between the two experimental
datasets themselves is 0.93. Furthermore, the binding of saquinavir to each
mutant protease is correctly ordered relative to the wild-type.
Phil. Trans. R. Soc. A (2008)
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The excellent quantitative ranking of drug-resistant mutants exhibited in this
study is encouraging for studies, currently underway, on a large array of drug-
bound protease variants. Furthermore, the methodology adopted by this study,
due to its trade-off between speed and accuracy, can readily form the template
for a simulation-based tool that would be used in clinical decision support.
(b ) Automation of simulation and calculation workflow

Figure 2 shows the various steps required for the execution of the workflow
involved in a binding free energy calculation of a HIV-1 protease–ligand variant,
which uses the MMPBSA method, mentioned above. We assume that a starting
crystal structure of the complex exists and that force field and charge parameters
for the protein and ligand are also provided.

Prior to performing any molecular dynamics simulation, a simulation-ready
model has to be generated from the coordinate, generic topology and force field
parameter information. This includes the extraction of suitable protease and
ligand coordinates, incorporation of any mutations, the addition of neutralizing
ions and solvation of the target structure. System-specific simulation-ready
topology and coordinate files then have to be generated.

The next step involves an array of sequential equilibration runs incorporating
the stages of minimization, annealing the system, gradual relaxation of
constraints (which vary based on the mutations that have been incorporated)
and, finally, unrestrained equilibration in a desired thermodynamic ensemble.
Each stage uses a separate configuration file containing the exact instructions for
that simulation. The production phase is very similar to equilibration and also
Phil. Trans. R. Soc. A (2008)
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consists of a chain of sequentially executed simulations. Finally, the trajectory
information that is output in the production phase is then post-processed in order
to calculate the enthalpies and entropies of binding. Each part of the calculation
uses separate configuration files that contain the specific instructions pertaining
to the energy-calculation method.

Automation of such a workflow when studying an array of varying complexes
thus saves considerable time and is an essential ingredient of any tool that repeatedly
uses such a process to confer decision support. The main obstacles to such
automation are the requirements that the entire pre-simulation model including all
simulation configuration files be generated automatically as well as automated
marshalling of simulations to and from relevant computational resources.
(c ) The binding affinity calculator

We have developed a tool, called the ‘BAC’, for the automated, fast and
accurate ranking of drug-resistant mutants of HIV-1 protease for an array of FDA-
approved inhibitors. BAC automates the entire workflow outlined above, required
to implement a molecular simulation-based free energy calculation of protease–
ligand binding. The workflow is decomposed into three main components:
(i) building a model, (ii) MD equilibration and simulation of the model, and
(iii) post-production analysis through which the free energy is calculated.
Phil. Trans. R. Soc. A (2008)
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Full automation is enabled by the integration of BAC with the AHE (Coveney
et al. 2007), which manages the workflow around various computational
resources. Perl scripts using the AHE command line interface are then used to
construct workflows to manage the order in which a series of simulations are
conducted, and are responsible for managing the calculation of a single, uniquely
defined protease–ligand sequence, termed a ‘unit’. A detailed description of BAC
is given in Sadiq et al. (2008).

An illustration of how the BAC could, in the future, be used to grade the
resistance conferred by a unique drug–protease sequence is shown in figure 3.
The determination of the resistance conferred by a unique protease–drug com-
bination relative to a wild-type structure is naturally determined from a
single BAC unit. Although represented similar to the grading schemes used by
the existing decision-support systems (Kantor et al. 2001), the fundamental
difference is that grading here is determined deductively and quantitatively from
free energy calculations, in a routine and automated fashion.
5. Case study 2: patient-specific investigation of cerebral blood flow

Cardiovascular disease is the cause of a large number of deaths in the developed
world (The World Health Report 2002). Cerebral blood flow behaviour plays a
crucial role in understanding, diagnosis and treatment of the disease; problems
are often due to anomalous blood flow behaviour in the neighbourhood of
bifurcations and aneurysms within the brain although the details are not well
understood. Experimental studies are frequently impractical owing to the
difficulty of measuring behaviour in humans; however, X-ray and magnetic
resonance angiography (MRA) enable non-invasive static and dynamical data
acquisition (Goyen et al. 2001). Indeed, some studies reveal relationships
between specific flow patterns around walls and cardiovascular diseases such as
atherosclerosis (Thubrikar & Robicsek 1995).

Today such imaging methods represent a very important tool for the diagnosis
of various cardiovascular diseases, together with the design of cardiovascular
reconstructions and devices for the enhancement of blood flow. Notwithstanding
these advances in measurement methods, modelling and simulation undoubtedly
have a crucial role to play in haemodynamics. Simulation, for example, offers the
clinician the possibility of performing non-invasive virtual experiments to plan
and study the effects of certain courses of (surgical) treatment with no danger to
the patient, offering support for diagnosis, therapy and planning of vascular
treatment (Taylor et al. 1999). Modelling and simulation also offer the prospect
of providing clinicians with virtual patient-specific analysis and treatments, and
it is in this context that we describe the following study.

Realizing the goal of blood flow simulation of the entire neurovasculature is
dependent on the availability of computational models that can efficiently
simulate haemodynamics in complex structures such as vascular systems. In the
project described here, the aforementioned imaging techniques are used to
provide patient-specific input data for such simulations. Furthermore, the
computational fluid ‘solver’ used must itself be numerically highly efficient and
provide scientists and neurosurgeons with the ability to manipulate and visualize
the associated large datasets. While conventional continuum fluid solvers based
Phil. Trans. R. Soc. A (2008)
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on finite-difference, finite-volume and finite-element codes certainly do exist
(Botnar et al. 2000), they are beset with problems in three spatial dimensions due
to the computational costs of mesh generation, the need to solve the auxiliary
Poisson equation for the pressure field and the various approximations associated
with the calculation of the shear stress from the flow velocity field. For large
systems, such as those we are concerned with in addressing the cerebral blood
flow, it is essential to develop and use scalable, high-performance parallel codes
that further complicate the use of continuum models. The intricate geometry of
the fluid vessels and treatment of fluid boundary conditions at such walls are also
difficult for continuum fluid dynamics models to handle. The lattice-Boltzmann
(LB) method offers an attractive alternative, and our approach is based on this
modelling and simulation method.

Our approach is intended to yield patient-specific information that helps
to plan embolization of arteriovenous malformations and aneurysms inter
alia. The prospect of patient-specific three-dimensional mathematical models
with temporal resolution to address issues of pulsatile flow, phase differences
and effects of treatment is very compelling both in terms of understanding
neurovascular pathophysiology and in planning patient treatment. Existing
grid-based interactive models for the visualization of medical images have
barely begun to address these issues (Sloot et al. 2003). However, in the context
of grid-based haemodynamics simulations, the LB method has already played a
significant role. Indeed, it has provisionally been used with grid facilities and,
alongside the finite-element method, incorporated in problem-solving environ-
ments (PSEs; Sloot et al. 2003; Zudilova & Sloot 2005). Here, the PSE combines
the access to medical image data (e.g. obtained with angiography), their three-
dimensional reconstruction by means of segmentation algorithms and
manipulation through three-dimensional graphical editing tools, the simulation
stage and the visualization and steering of the flow (pressure, velocity and shear
stress fields).

While these important developments in three-dimensional modelling have
been taking place, there have also been rapid developments in three-dimensional
imaging capabilities, e.g. recent installation of new equipment within the
National Hospital (NHNN), which comprises

(i) two new angiography suites (capable of three-dimensional rotational
angiography (RA), in which a volumetric image is created by obtaining
many two-dimensional projections of the brain during rapid injection of
intra-arterial contrast fluid into the carotid arteries),

(ii) a new 64 slice CT scanner capable of rapid acquisition of volumetric data
during intravenous injection of contrast into a peripheral vein, and

(iii) two new MRI scanners capable of the generation of MRA images, also
able to be processed volumetrically.

Large-scale patient-specific modelling of cerebral blood flow is however largely
without precedent. To fully exploit its potential, it is crucial to engage with
neuroradiologists and neurosurgeons.

Our work draws on a number of cutting-edge grid and high-performance
computing technologies. In the area of patient-specific medical treatment, the
time taken to turn around a simulation is of crucial importance. The goal of
Phil. Trans. R. Soc. A (2008)
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the present project is to demonstrate the ability to perform whole-brain
blood flow simulations distributed around the globe, steered and visualized in
real time by a surgeon, in order to treat a patient within a time frame that is
clinically useful.
(a ) HemeLB

We have developed a new LB algorithm and associated code, named HemeLB
(Mazzeo & Coveney 2008), which is specifically designed to address fluid flow in
sparse geometries, that is situations in which the fluid channels occupy a
relatively small (typically 15–20%) volume fraction of the simulation cell defined
by the scanned brain image, the remainder of which is treated as ‘void’ from the
point of view of the fluid flow solver. Performance benchmarks show that
HemeLB scales essentially linearly with processor count up to at least 1024
processors on HPCx (the full production partition on this capability computing
resource, which puts HemeLB in the highest performance class on this
machine). The algorithm is based on a data layout that automatically handles
lattices with large unstructured regions covered by void (i.e. non-fluid) nodes.
In the parallel code, spatial domain decomposition is handled by a simple and
fast cluster algorithm; partial overlapping of communication between different
processor domains and on-processor computation is also exploited to enhance
performance. Indeed, the parallel performance of this code outstrips comparable
codes that we are aware of in the literature, for example Artoli et al. (2006).
Two additional attractive features should be pointed out. HemeLB has been
combined with MPIg, the successor to MPICH-G2 (Karonis et al. 2003), which
hides latency much more effectively than earlier versions: we find that the
communication costs (being overlapped with computation) become almost
negligible, meaning that cross-site runs with HemeLB on very large models
run very efficiently. The topology-aware data communications implemented
in HemeLB take advantage of the asynchronous communication capability
provided by MPIg.

The HemeLB mesh generator receives a dataset produced by the MRA
technique in the form of slices of two-dimensional Portable Pixel Map images. If
the dataset is not in this format, the program MRICRO (http://www.sph.sc.edu/
comd/rorden/mricro.html) allows proper data conversion. The three-dimensional
RA images are used to reconstruct the vascular tree on the basis of assigning
bright pixels with blood. In our scientific work, we also make use of the publicly
available anonymized MRI brain scans available at: http://www.ixi.org.uk. The
LB formulation adopted in HemeLB is based on regular grids and thus our
mesh generator takes advantage of the same topology associated with three-
dimensional RA datasets.

We have developed a fast and robust parallel ray-tracing technique that is
used initially to automate the construction of inlet/outlet boundary sites and
conditions based on an efficient clustering method. The reconstructed system
computed in this way is used to specify the input configuration file for HemeLB.
HemeLB has been instrumented with the RealityGrid steering library (Pickles
et al. 2005) in order to permit interactive control of HemeLB simulations and
associated visualizations.
Phil. Trans. R. Soc. A (2008)
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(b ) Fluid flow visualization and rendering

An effective fluid flow simulation environment should employ both a high-
performance parallel fluid solver and the computational resources to compute,
render and visualize the progress of a simulation. In addition to the individual
compute, rendering and visualization components, the communication between
these three components has a major impact on performance. In order to minimize
the time taken for data exchange between computation and rendering, we
perform both on the same compute resource (figure 4).

Figure 5 illustrates some of the features of our PSE. The computational mesh
generator reads pre-filters and optionally increases the resolution of the dataset
with trilinear interpolations. Here, the original resolution is increased and the
resulting bounding box comprises 2560!2560!861 voxels but only some of them
are stored through a two-level grid. Input reading, pre-filtering and two-level grid
construction takes a few minutes, in particular due to the high cost of trilinear
interpolations. By selecting a pixel associated with a blood voxel, the whole
cerebral vascular tree is segmented by means of an efficient clustering algorithm.
Only a few seconds are needed to produce this high-resolution system that can be
rendered and visualized at an interactive rate. The boundary conditions are
determined by rapid construction of triangles representing the fluid input/output
boundaries using an efficient and robust ray-tracing-based algorithm. The
boundary condition set-up of our cerebral vascular tree, depicted in figure 5b
with different intensities of red to enhance visualization and including the
input/output boundary triangles, requires a few minutes to set up. The
manipulated system comprising approximately 8 million fluid lattice sites is
simulated and visualized by HemeLB, within which we have incorporated a
parallel ray tracer, at a speed of approximately 25 time steps per second with the
use of 100 processors. A snapshot of the velocity flow field is shown in figure 5c
using a volume-rendering technique.
6. Discussion

Patient-specific computer simulation is a compelling and inevitable prospect for
the enhancement and optimization of medical treatment. The paradigm of
patient-specific simulation is based on our ability to use digital biomedical data,
unique to a patient, in one or more computations that result in the determination
of relevant biophysical and/or biochemical properties of the patient. The
tailoring of medical treatment based on the outcome of such simulations has clear
advantages over treatment that does not distinguish between one patient and
another, but demands that patient-specific simulations must be informative
within clinically relevant time scales.

Here, we outline the computational infrastructure that is required to realize
such a goal. Furthermore, we have illustrated, by way of two specific and diverse
applications, the inroads we have made into realizing such a paradigm. In case
study 1, we demonstrated that the determination and automation of well-defined
and robust molecular simulation protocols and computation parameters, in
combination with HPC resources and grid technology, can be employed to
rapidly determine accurate free energies of binding of a set of inhibitors to an
array of HIV-1 proteases and thus rank the resistance conferred by particular
Phil. Trans. R. Soc. A (2008)
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Figure 4. Representation of the time frames of the interactive simulation environment used to
model cerebral blood flow using HemeLB (boxed numbers indicate frame numbers corresponding to
the rendered simulation). The simulation and the ray-tracing-based rendering (both parallel) are
performed using one or multiple grid-based computational resources (‘simulationCrendering’).
The image representing the simulation flow field is visualized on the client (‘displaying’). Assuming
that the visualization time is negligible, the frequency with which the ray tracing is performed
depends only on the server–client communication bandwidth and the speed of the simulation plus
visualization component. The effect of the depicted interaction frame is simulated at the eighth
time step due to the interaction–communication delay.
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mutants that may exist in a patient. Any such patient-specific mutants are
already routinely determinable from the current genotypic assay methodologies
(partnered by decision-support systems); we have developed a tool, called the
BAC, that automates the determination of the free energy of binding of any
given patient-specific protease sequence with an array of FDA-approved
inhibitors, returning results well within the clinical time scales.

In case study 2, we show how patient-specific three-dimensional RA-based
imaging of the brain can be used to generate simulation conditions from which
arterial blood flow in the brain can be determined via LB fluid simulations. We
have developed a grid-based high-performance interactive simulation environ-
ment to investigate cerebral blood flow of patient-specific systems on a clinically
relevant time scale. We have adopted an efficient fluid solver to simulate blood
behaviour in complex systems either on a single multiprocessor machine or on a
loosely coupled, geographically distributed set of platforms. Our computational
mesh generator reads and pre-filters, increasing the original resolution and
allowing us to reconstruct a very large simulation system in a few seconds. Our
interactive simulation environment relies on an efficient rendering approach and
permits the extremely rapid simulation and visualization of a large-scale cerebral
patient-specific system. We can effectively distribute jobs around the available
computational resources, monitor as well as interact with them, all enabled by
the development of a simple graphical interface.

Inevitably, the adoption of patient-specific simulation by the medical
community will have several ramifications for the way computational resources
are administered. First, the potential scale of such an enterprise will not only
necessitate access to large-scale HPC resources and computational grids with fast
network connections and seamless, interoperable middleware, but also will require
changes to usage policies across federated grid resources. But there is also a moral
Phil. Trans. R. Soc. A (2008)
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Figure 5. Illustration of several features of the PSE. (a) One of the 440 slices of 5122 pixels each of
a three-dimensional RA patient-specific dataset. (b) The boundary condition set-up of our
cerebral vascular tree with different intensities of red to enhance visualization. (c) A snapshot of
the velocity flow field using a volume-rendering technique with increasing velocities depicted from
blue to green.
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dimension to be considered: with limited access to resources, who will be able to
benefit from such patient-specific facilities? Current grid accounting and
scheduling models are not capable of supporting the routine medical simulation.
Compute jobs that are within this class would certainly need to have some kind
of urgent status on general purpose grids to ensure that the turnaround time is
able to meet clinical requirements and thus be prioritized in queuing systems.
Indeed, it is quite possible that, if these techniques become routine, the demand
will not be met solely by general purpose computational grids, and may require
additionally provisioned infrastructure, either through the relevantmedical service
providers and/or private companies that sell compute power for such use.

Another issue concerns matters of privacy and confidentiality. In the case of
patient-derived data for case study 1, for example, the viral genotypic data in
question (required for drug sensitivity prediction and thus patient-specific
treatment guidance) are likely to be held locally within hospital databases
protected by virtue of their own local policy and procedure. Addressing data-
privacy issues in the eventuality of using these data for patient-specific
simulations, however, is not going to be merely a hospital issue. Rather it is
likely to be a national and international issue, since patient-specific data may be
regularly crossing international borders in order to access the required computa-
tional resources. Clearly, an important consideration here is the protection
and privacy of sensitive medical data, which will require considerable review and
policy development if patient-specific simulation for medical intervention is
to become commonplace. For case study 2, for example, one may envisage a
scenario where the transfer of the three-dimensional RA data from a private
hospital network to a network infrastructure, such as the UK’s JANET Light-
path network, raises tangible issues of data privacy and the requirement of data
anonymization. In this case, the data associated with a three-dimensional RA can
be broken up into two broad parts: metadata to be distinguished from the actual
scan data and associated physical parameters. These can also be described as
anonymized data and patient-specific confidential data, respectively. Metadata
relate to patient-specific data, such as name, age, weight, etc. The anonymized
data relate to the scan volume data, along with the physical parameters, such as
voxel size, which are required by HemeLB for accurate fluid flow modelling. In
Phil. Trans. R. Soc. A (2008)
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this example, a simple solution would see the metadata kept on the private
hospital network, while the anonymized three-dimensional RA is sent to remote
compute resources, with both sets of data related by a database key. For such
a neurosurgical patient-specific simulation environment to work on a regular
basis, such systems of anonymization and de-anonymization of data must
become automated.

It is clear that, if agreed methods on data anonymization are not available,

this may jeopardize the entire enterprise of patient-specific simulation.1

Furthermore, ethical issues arise. Who would bear responsibility for mistakes
made using such treatment methodologies? In this area, the Virtual
Physiological Human initiative (Viceconti et al. 2007) will play a pivotal role
in publicizing and communicating the legal and ethical issues that beset this
developing field of research. The broad remit of this and other physiological
modelling initiatives that rely heavily on access to large amounts of patient data
(often collected as part of routine clinical practice) will require that significant
efforts are made in the development of the tools, methods, data standards,
communication strategies, data and model curation strategies and associated
policy for ethical access to and use of medical data.

Finally, as and when patient-specific simulation becomes established, there
will need to be a shift in the way ‘grid computing’ and ‘supercomputing’ are
perceived. The concept of patient-specific simulation adumbrates an era when,
instead of being the playground of a privileged few scientists, large-scale high-
performance computing resources will be routinely used by many people vast
numbers of times per day. It will result not only in overturning our perceptions of
what supercomputing constitutes but also the economics of the entire enterprise.

The work described in this paper has used medical data from anonymized publicly available online
repositories. For current and future work in patient-specific studies, ethics approval is currently
being sought.
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generation HIV-1 protease inhibitors: implñications for drug design. Arch. Biochem. Biophys.
390, 169–175. (doi:10.1006/abbi.2001.2333)

Viceconti, M. et al. 2007 Seeding the EuroPhysiome: a roadmap to the virtual physiological
human. See http://www.europhysiome.org.

Wan, S., Coveney, P. V. & Flower, D. R. 2005 Peptide recognition by the T cell receptor:
comparison of binding free energies from thermodynamic integration, poisson–Boltzmann and
linear inberation energy approximations. Phil. Trans. R. Soc. A 363, 2037–2053. (doi:10.1098/
rsta.2005.1627)

Wang, W. & Kollman, P. A. 2001 Computational study of protein specificity: the molecular basis
of HIV-1 protease drug resistance. Proc. Natl Acad. Sci. USA 98, 14 937–14 942. (doi:10.1073/
pnas.251265598)

Wang, W., Donini, O., Reyes, C. M. & Kollman, P. A. 2001 Biomolecular simulations: recent
developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein,
and protein–nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30,
211–243. (doi:10.1146/annurev.biophys.30.1.211)

Wlodawer, A. & Erickson, J. W. 1993 Structure-based inhibitors of HIV-1 protease. Annu. Rev.
Biochem. 62, 543–585. (doi:10.1146/annurev.bi.62.070193.002551)

Wu, T. D. et al. 2003 Mutation patterns and structural correlates in human immunodeficiency
virus type 1 protease following different protease inhibitor treatments. J. Virol. 77, 4836–4847.
(doi:10.1128/JVI.77.8.4836-4847.2003)

Yoshimoto, K., Kovatch, P. & Andrews, P. 2005 Co-scheduling with user-settable reservations.
In Job scheduling strategies for parallel processing (eds D. G. Feitelson, E. Frachtenberg,
L. Rudolph, & U. Schwiegelshohn). Lecture Notes in Computer Sciences, no. 3834, pp. 146–156.
Berlin, Germany: Springer.

Zoete, V., Michielin, O. & Karplus, M. 2002 Relation between sequence and structure of HIV-1
protease inhibitor complexes: a model system for the analysis of protein flexibility. J. Mol. Biol.
315, 21–52. (doi:10.1006/jmbi.2001.5173)

Zudilova, E. V. & Sloot, P. M. A. 2005 Bringing combined interaction to a problem solving
environment for vascular reconstruction. Future Generation Comput. Syst. 21, 1167–1176.
(doi:10.1016/j.future.2004.04.004)
Phil. Trans. R. Soc. A (2008)

http://dx.doi.org/doi:10.1007/s10877-005-0673-2
http://dx.doi.org/doi:10.1016/j.jviromet.2005.04.001
http://dx.doi.org/doi:10.1021/ja0779250
http://dx.doi.org/doi:10.1021/ja0779250
http://www.who.int/whr/en
http://www.who.int/whr/en
http://dx.doi.org/doi:10.1016/0003-4975(94)01037-D
http://dx.doi.org/doi:10.1006/abbi.2001.2333
http://www.europhysiome.org
http://dx.doi.org/doi:10.1098/rsta.2005.1627
http://dx.doi.org/doi:10.1098/rsta.2005.1627
http://dx.doi.org/doi:10.1073/pnas.251265598
http://dx.doi.org/doi:10.1073/pnas.251265598
http://dx.doi.org/doi:10.1146/annurev.biophys.30.1.211
http://dx.doi.org/doi:10.1146/annurev.bi.62.070193.002551
http://dx.doi.org/doi:10.1128/JVI.77.8.4836-4847.2003
http://dx.doi.org/doi:10.1006/jmbi.2001.5173
http://dx.doi.org/doi:10.1016/j.future.2004.04.004

	Patient-specific simulation as a basis for clinical decision-making
	Introduction
	The basis for patient-specific simulation approaches
	Infrastructure and technology required for patient-specific simulation
	Resource reservation and urgent computing
	Grid middleware
	Infrastructure

	Case study 1: simulation-based decision support in HIV treatment
	Rapid and accurate ranking of binding free energy differences using molecular simulation
	Automation of simulation and calculation workflow
	The binding affinity calculator

	Case study 2: patient-specific investigation of cerebral blood flow
	HemeLB
	Fluid flow visualization and rendering

	Discussion
	The work described in this paper has used medical data from anonymized publicly available online repositories. For current and future work in patient-specific studies, ethics approval is currently being sought.
	References


