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HIV decision support: from molecule to man
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Human immunodeficiency virus (HIV) is recognized to be one of the most destructive
pandemics in recorded history. Effective highly active antiretroviral therapy and the
availability of genetic screening of patient virus data have led to sustained viral
suppression and higher life expectancy in patients who have been infected with HIV. The
sheer complexity of the disease stems from the multiscale and highly dynamic nature of
the system under study. The complete cascade from genome, proteome, metabolome and
physiome to health forms a multidimensional system that crosses many orders of
magnitude in temporal and spatial scales. Understanding, quantifying and handling this
complexity is one of the biggest challenges of our time, which requires a highly
multidisciplinary approach. In order to supply researchers with an interactive framework
and to provide the medical professional with appropriate tools and information for making
a balanced and reliable clinical decision, we have developed ‘ViroLab’, a collaborative
decision-support system (http://www.virolab.org/). ViroLab contains computational
models that cover various spatial and temporal scales from atomic-level interactions in
nanoseconds up to sociological interactions on the epidemiological level, spanning years of
disease progression. ViroLab allows for personalized drug ranking. It is on trial in six
hospitals and various virology and epidemiology laboratories across Europe.

Keywords: human immunodeficiency virus; multilevel modelling; drug resistance;
systems biology; decision support
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and

*A
1. Introduction

Since it was recognized in 1981, acquired immunodeficiency syndrome (AIDS) has
claimed more than 25 million lives. The human immunodeficiency virus (HIV)
epidemic has become a pandemic and today at least 33 million people are living
with HIV (Haub 2007; UNAIDS 2008). In a report by Mathers & Loncar (2006)
from the World Health Organization, projections of global mortality up to
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2030 identified HIV/AIDS as one of the three leading causes of death. Each year,
approximately a billion dollars is invested globally in HIV/AIDS research to
change this scenario. Although almost every step of the virus life cycle has been
unravelled in the past 25 years, and 24 distinct drugs targeted against HIV have
been approved, all efforts to achieve an overall eradication of the virus have turned
out to be ineffective up to now. Life expectancy under highly active antiretroviral
therapy (HAART) treatment has however been extended to 21.5 years (Fang et al.
2007). Infection byHIV nowadays is being transformed from ‘a death sentence’ to a
controllable disease that needs early diagnosis, lifelong patient-tailored treatment,
continuous follow-up and strict drug adherence.

Several studies have demonstrated that better outcomes are correlated with
patients treated by a clinician with greater expertise (Kitahata et al. 2000;
Delgado et al. 2003). This improvement has been described in terms of mortality,
hospitalization rate, cost of care, adherence to medications, etc. The definitions
of expertise in these studies have varied, but most relied on the number of
patients actively managed (Department of Health and Human Services 2008).

Even for the expert clinician, usually a straightforward relational approach is
not possible. Given the wealth of data (sequencing and genotypic resistance
testing are becoming routine practice) and confounding factors, treatment
decisions are highly patient dependent and there is an urgent need for genotypic
resistance interpretation tools that are up to date and transparent (provide
references for their data sources). The application of artificial intelligence and
computational techniques to biomedicine has resulted in the development of
computer-based decision-support systems (DSSs).

DSSs are designed to enable medical professionals to easily keep up to date
with the latest clinical expertise and to incorporate this directly in the decision-
making process.

The Achilles heel of the DSSs is the sole dependence on the gathering of
information from the published literature by experts, thus overlooking the
importance of deductions from other research fields such as molecular dynamics
(MD) simulations, immune system modelling or Bayesian network learning. Our
vision is to provide researchers and medical doctors with a virtual laboratory
(VL) for infectious diseases, which we call ViroLab, to enable easy access to
distributed simulations as well as facilitating, processing and analysis of
virological, immunological, clinical, experimental and epidemiological data.
2. The ViroLab approach to HIV

ViroLab consists of complementary, multilevel computational tools as shown
in figure 1; the details of the links between those will be explained in §2a.
Its components are coordinated to form a framework capable of answering complex
questions that clinicians and HIV researchers are facing on a daily basis. Hence,
while contributing to fundamental research, ViroLab enhances the state of the art
in DSSs by offering case-specific predictions from independent resources.

The ViroLab drug ranking system estimates the sensitivity of the patient’s
virus for available drugs at the genome level. It is a rule-based scheme that is
based on expert opinion, scientific literature, published data and relating
genotype to phenotype experiments (Sloot et al. 2006).
Phil. Trans. R. Soc. A (2009)
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The HIV population can compensate for the protease inhibitor (PI) resistance
mutations by acquiring cleavage site (CS) mutations. To detect the possible
associations between PI resistance mutations and CS mutations, covariation
analysis of available HIV sequences has been performed.

At the cellular level, we are modelling the co-receptor use of HIV to
understand the virus entry process and how this process evolves in vivo and
its effects on disease progression. Our research in immune system response
investigates the effects of HIV infection with HAART treatment and the
onset of AIDS on medically measurable parameters such as viral load and
CD4C T-cell count.

At the epidemiological level, we aim to understand the dynamics of HIV
epidemics spreading through sexual contact networks. Therefore, we employ a
complex network (CN), which describes the heterogeneous population of HIV
exposure groups. The CN takes as input the results of the simulations on
the molecular and cellular levels and the demographic and behavioural
information available.

The integrated holistic approach to decision support provided by ViroLab
requires an advanced computational and data management infrastructure. For
that we have developed the ViroLab VL, the backbone of ViroLab, which
provides researchers and medical doctors with tools to collaborate, share data
resources and services using grid technology.

VL is a set of integrated components that, used together, form a distributed
and collaborative space for science (figure 2). Multiple, geographically dispersed
laboratories and institutes use the VL to plan and perform experiments as well as
to share their results (Gubała et al. 2007). Experiment in this context means a
so-called in silico experiment; that is, a process that combines data and computa-
tions in order to obtain new knowledge on the subject in question (Bubak et al.
2008). Three groups of users have been identified: clinicians using DSSs for drug
ranking; developers who plan complex biomedical simulations; and users who
apply prepared experiments (scripts). During experiment execution, provenance
data are created and stored. The advanced provenance technology of the VL allows
users to trace decisions back to their origin and to share complicated workflows.

In the remainder of the paper, we give a brief overview of the various
components of ViroLab and how they fit together. We also present some new
results obtained with this VL for infectious diseases.
(a ) From micro to macro

(i) Molecular level: drug–protein binding affinity simulations

The MD simulation takes as an input the chemical composition of the
drugs and the various mutations of the viral proteins. It calculates the binding
affinity of the drug–protein complexes from which we can derive the fitness of
the virus and the associated viral load. This will form an input to the tools
working on the cellular level as well as the transmission parameters in the
sexual network.

The potential of molecular simulations to enhance our understanding of drug
resistance in HIV/AIDS relies ultimately on their capability to achieve an
accurate ranking of drug-binding affinities, on clinically relevant time scales.
Phil. Trans. R. Soc. A (2009)
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Figure 1. The ViroLab framework with its components. From the bottom going clockwise:
patient-specific viral load, mutations and CD4C information are used by the MD calculations to
estimate the binding affinity of various drugs with reverse transcriptase (RT) and protease. The
binding affinities as well as the mutations are used to estimate the entry of the virus into the cell.
Next the binding affinity, entry process and CD4C count (squares) and viral load (circles,
viraemia) are used to estimate the immune response, and finally the immune response and the
binding affinity are used in modelling the individual nodes in a complex sexual interaction
network. From the bottom going anticlockwise: context-sensitive text mining distils relationships
between drugs and mutations and presents these as ranking rules. The decision-support kernel
integrates both types of information (simulation and text mining) into integrated decision support for
drug ranking.
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We have investigated the potential of the Poisson–Boltzmann surface area
(MM/PBSA) methodology to accurately rank the binding affinities of the
inhibitor saquinavir to the WT and resistant variants of HIV-1 protease (PR):
L90M; G48V; and G48V/L90M. We have also used MM/PBSA to identify
the thermodynamic determinants of binding, as a means to understand the
mechanisms of emergence of the L90M and G48V mutations under chemothera-
peutic pressure.

We identified conformational preferences of the inhibitor and binding
site residues and characterize them structurally and energetically (Sadiq et al.
2007). For a detailed description of the modelling of the protease–saquinavir
complexes, the MD simulation protocol and details of the MM/PBSA
calculations see Stoica et al. (2008).
Phil. Trans. R. Soc. A (2009)
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Figure 3. (a) Comparison of the free energies calculated by MM/PBSA (DG(calc)) with
experimental data (DG(exp)). 31 (squares) are the data from Maschera et al. (1996), 32 (triangles)
from Ermolieff et al. (1997) (correlation coefficient CC(31)Z0.96; CC(32)Z0.81). (b) Thermo-
dynamic decomposition of MM/PBSA binding energies for saquinavir with the four PRs under
study, WT, L90M, G48V and G48V/L90M, based on analysis of the last 4 ns of post-equilibration
MD (black bars, DGelecKtot; green bars, DGvdwCnp; brown bars, KTDS ).
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Detailed studies indicate that we can resolve accurately the binding
affinities of saquinavir with four PR mutations (see figure 3 and Stoica et al.
2008). Obviously, these large-scale N-body simulations require a substantial
Phil. Trans. R. Soc. A (2009)
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computational infrastructure. For this, we make use of local supercomputers, the
European DEISA supercomputer grid and the US TeraGrid. These large-scale
computer infrastructures are accessible through the grid-based VL (Sadiq et al.
2008). For instance, a recent DEISA (http://www.deisa.org) allocation as a
European Virtual Communities Project allocation (approx. 1.25M CPU hours)
has allowed us to perform part of our work on EU (HPC) grid infrastructure.
At Supercomputing 2008, we demonstrated that we can seamlessly link
TeraGrid and DEISA resources using Web services via the application
hosting environment (GT4 on TeraGrid and UNICORE 6 on DEISA; see Coveney
et al. 2007).

The binding affinities thus resolved can be used to estimate the drug response
of an individual and the individual’s transmission parameter (likelihood of
transmission of virus at sexual contact); they provide an indication of the
effectiveness of that drug and can then be used in the subsequent immune
response simulations as well as in the individual nodes of the CN where it is
reflected in the transmission probability.
(ii) Level of molecule populations: cleavage site compensatory mutation detection

This tool takes as input a set of Gag-Pol sequences including the gene for the
viral PR and one or more of its CSs, and produces a prediction for potential
secondary drug resistance mutations in the latter. The cleavage of the Gag-Pol
polyprotein by the PR is essential for the infectivity of HIV virions. PI therapy
can give rise to primary resistance mutations in the PR, which are often
associated with a decreased activity of the enzyme. Impaired function can be
partially restored by compensatory mutations in the CS, probably by providing a
better substrate for the mutated proteases. Associated pairs of mutations have
been detected from large sets of sequences (‘populations of molecules’) by
covariation analysis (Hoffman et al. 2003), and we have extended this approach
to identify CS mutations that arise in response to primary resistance mutations
in the PR. We analysed HIV-1 subtype B nucleotide sequences containing the
protease region from the Los Alamos HIV Sequence Database (www.hiv.lanl.
gov). Our final alignment contained 30 305 sequences and spanned the entire
Gag-Pol region; translation of nucleotide sequences and further analyses were
performed using PERL programs and PAUP� (http://paup.csit.fsu.edu).
Associations between PR and CS mutations were assessed by c2-tests of
independence. We also implemented a simple, robust ‘phylogenetic jackknifing’
test to exclude non-functional covariations that arose by ‘common descent’ only.
Such apparent covariations may arise if a pair of mutations (without functional
association) is present in an intensively sampled patient or patient group. Briefly,
our method tests whether covariation of a mutation pair can be abolished by
excluding any small subset of closely related sequences from the analysis. Failure
to do so indicates that the covariation signal is robust over the whole set of
sequences and is therefore likely to bear functional relevance.

We found significant association between several pairs of PR and
CS mutations. Most associations were positive, which indicates that the CS
mutations may indeed compensate the effect of the PR mutations. Interestingly,
some mutation pairs demonstrated a negative correlation, indicating that
changes in these CSs are less tolerated by the mutant than by the wild-type
Phil. Trans. R. Soc. A (2009)
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protease. Remarkably, a large fraction of the correlated pairs involved a CS
position that falls outside the classical definition of a CS, which suggests
that positions that lie farther from the cleaved bond may also influence the
efficiency of cleavage.

This method generates predictions for CS positions and CS/PR mutation
interactions that might be relevant in the complex evolution of PI resistance.
The functional relevance of these associations can be corroborated by calculating
binding affinities for the mutant PR and CS variants by the computation
methods described in §2a(i). Confirmed results are applied to refine the rule set
for drug resistance prediction and used in the sexual contact network.
(iii) Cellular level:modelling the viral entry process throughHIV co-receptor tropism

The entry simulation uses the binding affinities as well as the mutations to
estimate the entry of the virus into the cell. The result is fed into the immune
system response simulator. In 50 per cent of HIV-1 infected individuals, a
co-receptor switch is observed. Given the transmission with an R5 tropic virus,
we aim to evaluate the mutation rate by progressing the virus quasispecies to an
optimum fitness by changing co-receptor tropism. The emergence rate of X4
tropic variants, the factors leading to it and the timing of the co-receptor switch
are investigated to answer whether accumulation of mutations can be understood
from the co-receptor switch.

Viral tropism ranges from R5 tropic to R5X4 tropic and finally to X4 tropic
variants and allows for biologically natural trade-off between viral mutation rate
and the overall reproduction capacity of the viral quasispecies.

A five-point mutational distance is employed in the model from pure R5 tropic
to X4 tropic virus where intermediate steps stand for the R5X4 variant. Three
kinds of mutation rates are defined as forward (increasing the fitness of the
variant), neutral and lethal 0.3, 0.3 and 0.4, respectively (Sanjuán et al. 2004).

Each simulation is performed for 10 person years and the experiment has been
conducted for a large range of mutation rates. We have collected the data from
the population behaviour of T-cells and HIV virions for different substitution
rates. For a detailed explanation of the model, see Ertaylan & Sloot (2008).

In figure 4a, we observe 10K5–10K4 interval as maximum mutation rate
for the viral quasispecies. After this interval, the viral population experiences
a fitness loss due to emergence of lethal mutations in excess numbers. The
upper boundary for the mutation rate obtained from our simulation is in
very good agreement with the work of Mansky & Temin (1995) and Huang &
Wooley (2005).

In figure 4b, no co-receptor switch is observed under 10K5. For increased
substitution rates (3!10K5–10K4), the viral population experiences co-receptor
changes in 50–80% of the cases, which coincides with the medical data. Larger
substitution rates (more than 10K4) produce continuous fluctuations of each
tropic variant (data not shown), indicating that the natural selection halts and
all the variants coexist, although the dominant strain is changing over time.

These results clearly demonstrate that there is an upper boundary for the
mutation rate for the selection on co-receptor tropism to work. It is tempting to
speculate that there is a lower boundary for the mutation rate that is determined
by the negative selection pressure of the humoral immune response. Hence, the
Phil. Trans. R. Soc. A (2009)
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efficient and timely production of R5X4 and X4 tropic variants can be achieved
only with appropriate mutation rate. This information is being fed into the
immune system response simulator.
(iv) Cellular level: the immune system response

The immune simulator takes as an input the viral load, the CD4C count and
the drug efficacy and then estimates the temporal HIV dynamics. This dynamics
is used as an input to the sexual network nodes to model the various stages of
HIV infection of the individuals.

We simulate four phases (acute, chronic, drug treatment and onset of AIDS).
We investigate the HIV infection dynamics with therapy using microscopic
simulations. Non-uniform cellular automata (CA) are employed to simulate drug
treatment of HIV infection, where each computational domain contains different
CA rules, in contrast to normal uniform CA models.

We have defined CD4C T-cells as the main entities. Each cell is assigned
healthy/infected or dead flag depending on the interactions with its neighbours
(for more details see Sloot et al. 2002).

Different drug therapies can be modelled by differences in a response
distribution function over time. The function is chosen to model the fact that
the drug therapy will not immediately influence all of the infected cells, but
rather it will affect part of them at each time step. At the same time, the function
accounts for the concept of drug-resistant virus strains emerging.

The simulation result for treatment naive individual dynamics is shown in
figure 5. The result represents qualitatively the HIV infection dynamics. The
first phase indicates the fast proliferation of the original HIV strains before
the actual immune system response (acute phase). This phase ends when specific
immune response occurs for these strains. The next phase, the chronic phase
that takes years, is the phase where the viral load increases slowly and CD4
counts decrease slowly. When CD4C T-cell counts drop to a certain level
(normal 200–500 counts mlK1), the drug therapy is started. In this phase, virus
replication is blocked and CD4C T-cell counts increase. Once resistant strains
against the drugs evolve, the last phase of the disease occurs disrupting the
whole immune system.
Phil. Trans. R. Soc. A (2009)
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The main success of the present model is the adequate modelling of the four
phases of HIV infection with different time scales in a single model. Our simulation
results show a qualitative correspondence to clinical data. The individual HIV
dynamics similar to that shown figure 5 is given as an input to the individual nodes
in the sexual networks and population dynamics simulation.

(v) Population level: complex network model for HIV population dynamics

The CN model takes as an input the binding affinities from the MD simulator
and the immune response together with epidemiological and demographic
information from Centre of Disease Control-like databases. It stochastically
predicts the evolution of theHIVdynamics aswell as the transmission of resistance.

Despite the availability of a large number of mathematical models describing
the spreading of HIV, a good understanding of the dynamics through numerical
analyses is still a major challenge. The estimate of HIV/AIDS incidence is quite
uncertain since many people are still unaware of their infection due to the long
asymptotic incubation period. Heterogeneity of the infected population and the
various routes of infection among its members exert additional layers of
complexity. Therefore, it is essential to combine epidemiological processes with
sociological models and network sciences. Here we propose a new way to model
HIV infection spreading through the use of dynamic CNs.

The heterogeneous population of HIV exposure groups is described through a
unique network degree probability distribution. The network model is
constructed as a dynamical scale-free network, wherein a node represents each
individual and the edges are the links between the individuals. The infection
spreads along these edges.

The time evolution of the network nodes is modelled by a Markov process and
incorporates HIV disease progression through a configuration model of T-cell
CD4 count for each node.

While constructing the model, we have taken into account that HIV is
primarily a sexually transmittable disease (STD). In our model, we identify three
ways of transmission:

—men who have sex with men (MSM),
—heterosexual population, and
— injection drug users (IDU); STD dynamics is not implemented for this group.
Phil. Trans. R. Soc. A (2009)
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Each risk group has its own probability of infection per partner l as well as
specific demographic factors and related contact networks.

The results are validated against historical data of AIDS cases in the USA as
recorded by the Center of Disease Control. These data include at least three
epochs of the epidemic evolution, pre-ARV, ARV and HAART treatments, and
three kinds of HIV spreading.

As can be seen from figure 6, the simulation results provide very close agreement
to the officially registered annual AIDS cases. The obvious feature in figure 6 is a
substantial decline of AIDS cases after introduction of HAART (1996). Our model
correctly reproduces this decline and the temporal separation of the peaks of the
AIDS epidemic in the heterosexual and MSM populations (see Sloot et al. 2008a).

In conclusion, the presented parametrized CN model accurately describes the
dynamics of HIV spreading taking into account all the existing kinds of HIV
spreading. We find a remarkably good correspondence between the number of
simulated and registered HIV cases, indicating that our approach to modelling
the dynamics of HIV spreading through a sexual network is a valid approach that
opens up completely new ways of reasoning about various medication scenarios.

This tool, which integrates the clinical information with social behaviour, is
used by epidemiologists and by decision-makers to study scenarios of treatment
and prevention measures.

(b ) The virtual laboratory

The VL hosts biomedical information related to viruses (proteins and
mutations), patients (viral load, CD4 count, etc.) and literature (on drug
resistance etc.), and it enables one to plan and run experiments transparently on
distributed resources in grid systems, clusters and standalone computers.
Phil. Trans. R. Soc. A (2009)
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The VL integrates various tools, modules, protocols and interfaces into a
single virtual space, where various types of users are able to (collaboratively)
perform tasks. In the upper layer, we have the set of users performing tasks using
the tools that are grouped in the interfaces: there are dedicated tools for each
group. The centrepiece of the architecture, the unified run-time system, is the
part that allows these various users and their tools to understand each other.
What is more, this run-time layer serves as a bridge to resources dispersed in the
VL: both data sources and computational services. Finally, these services run on
physical equipment that is at their disposal. There are multiple solutions here,
which are supported by our VL; among others, it supports also large grid
computing test beds. Currently, the EGEE test bed through the LCG software is
supported as well as the DEISA resources.

In this way, the VL provides an integrated environment to organize
computational and ranking experiments in HIV. Details of the ViroLab VL are
beyond the scope of this paper; for downloads and demonstrations, we refer the
interested reader to: http://virolab.cyfronet.pl/trac/vlvl.
3. Conclusions

ViroLab is advancing the state of the art by promoting the theoretical
understanding of infectious diseases while bridging the gaps not only within
each research field but also across different fields. It is integrated in a grid-based
VL (Bubak et al. 2008) that facilitates medical knowledge discovery and the
interaction and integration of the wide variety of HIV modelling that is available.
This offers the potential to provide medical doctors with a DSS to rank drugs
targeted at individual patients. Its infrastructure provides virologists with an
advanced environment to study trends on molecular, genome and cellular,
individual and epidemiological levels.

For instance, to tackle problems such as the development of drug resistance to
saquinavir, we envisage being able to simulate the probability of drug resistancewith
the binding affinity calculator (BAC; Sadiq et al. 2008) and identify compensatory
mutations in the CSs. These results could then be integrated with a fitness
landscape. This could then be used to interpret patient data in high resolution and
provide an improved DSS.

Another potential scenario concerns the transmission of drug resistance at the
population level. Viral load and infectivity can be estimated on an individual
level using the BAC and the immune system response model. These parameters
are then supplied to the HIV population dynamics model, eventually resulting in
a network with predicted drug-resistant nodes. This could help policy makers to
answer questions such as: ‘which drug should be made free and publicly available
without creating a universal drug-resistant population’ or ‘which combination of
HAART would give the best outcome in resource-poor areas where adherence is a
major problem?’

In this ongoing research, interesting results have already been obtained, showing
the viability and the extensibility of the approach taken (e.g. Deforche et al. 2007,
2008; Bubak et al. 2008; Sloot et al. 2008a,b; Stoica et al. 2008). The systemwe have
described is still under development with new functionalities added frequently
through extensive usability studies in a series of hospitals across Europe.
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