
 
 

 

ViroLab Virtual Laboratory: 
Data Access Services 

Prototype Manual 

Project Start: 01/03/2006 

Project Duration: 36 Months 

Priority area 2.4.11 

Contract No.: INFSO-IST-027446 

Website: http://www.virolab.org 

 
 
Due-Date: 31-08-2007 

Delivery: 31-08-2007 

Lead Partner: USTUTT 

Dissemination Level: confidential 

Status: draft 

Approved:  

Version: 0.4 

 



 
 

 

Log of Document 
 
Version Date Changes Summary Authors 
0.1 11/08/2007 Initial version of DAS manual Matthias Assel 
0.2 17/08/2007 First document reviewing Matthias Assel 

0.3 19/08/2007 
Extensive proofreading and 
editing 

Matthias Assel, Aenne Löhden 

0.4 05/09/2007 
Included latest DAS 
functionality  

Matthias Assel 

 



 
 

 
TABLE OF CONTENTS 

COPYRIGHT NOTICE .................................................................................................................................... 4 

1. INTRODUCTION.............................................................................................................................................. 5 
1.1. REFERENCES AND SOURCE CODE .................................................................................................................. 5 

2. PROTOTYPE USAGE ...................................................................................................................................... 6 
2.1. RUNNING THE PROTOTYPE............................................................................................................................. 6 

2.1.1. Operating Requirements........................................................................................................................ 6 
2.1.2. Step-by-Step User Setup ........................................................................................................................ 7 

2.2. BASIC OPERATIONS........................................................................................................................................ 8 
2.3. ADVANCED FEATURES................................................................................................................................. 11 
2.4. KNOWN PROBLEMS...................................................................................................................................... 12 

3. INTERFACE REFERENCE GUIDE............................................................................................................. 14 

4. TROUBLESHOOTING Q&A ........................................................................................................................ 17 

5. IMPLEMENTATION STRUCTURE ............................................................................................................ 18 
5.1. PRODUCT USE CASES................................................................................................................................... 18 
5.2. PRODUCT COMPONENT MODEL ................................................................................................................... 19 
5.3. DETAILED IMPLEMENTATION MODEL.......................................................................................................... 20 

6. PRODUCT TESTING ..................................................................................................................................... 24 

7. CONTACT INFORMATION AND CREDITS............................................................................................. 25 

8. ABBREVIATIONS .......................................................................................................................................... 26 



 
 

COPYRIGHT NOTICE 
 

Copyright (c) 2007 by University of Stuttgart. All rights reserved. 

 

Use of this product is subject to the terms and licenses stated in the GPL license 
agreement. Please refer to http://www.gnu.org/licenses/gpl.html for details. 

 

The DAS product in its current version makes use of two freely available software 
frameworks and external libraries in its operations. Namely it depends on the 
following software and libraries: 

1. the Globus Toolkit 4.0 provided by The University of Chicago 

2. the OGSA-DAI 2.2 Framework provided by The University of Edinburgh 

3. the Addressing library provided by The Apache WS_Addressing 
Foundation 

4. the Axis libraries provided by The Apache Software Foundation 

5. the Commons libraries provided by The Apache Software Foundation 

6. the Jaxrpc library provided by The Apache Software Foundation 

7. the Log4j library provided by The Apache Software Foundation 

8. the SAAJ library provided by The Apache Software Foundation 

9. the Xalan library provided by The Apache Xalan Foundation 

10.  the XercesImpl library provided by The Apache Xerces Foundation 

11.  the Xml-apis library provided by The Apache Software Foundation 

12.  the Xmlsec library provided by The Apache Software Foundation 

13.  the Xerces xml parsing libraries provided by W3C 

14.  the Wsdl4j library provided by The Apache Software Foundation 

15.  the JUnit framework provided by JUnit.org 

 

All the above software is provided for use free of charge on the basis of open 
source licenses, either the Apache Public License (1), OGSA-DAI Project Licence 
(2), Apache License (libraries 3 to 12), W3C Copyright Notice and License 
(library 13) or Common Public License (libraries 14 and 15). 

 
Globus is a trademark held by the University of Chicago. All rights reserved. 

 

OGSA-DAI is a trademark held by University of Edinburgh. All rights reserved. 

 

Axis, log4j, wsdl4j are registered trademarks of The Apache Software 
Foundation. All rights reserved. 

 

This research is partly funded by the European Commission IST-2005-027446 
Project “ViroLab”. 



 
 

1. INTRODUCTION 
The complexity of data management on a Grid arises from the scale, dynamism, 
autonomy, heterogeneity, and distribution of resources. To conceal these 
complexities of the underlying infrastructure, a sophisticated management 
system needs to be developed, which ensures that the resources appear 
transparent to their users. This could be achieved by hiding the different data 
resources and their internals behind a layer of virtualization services that 
guarantees data access in a consistent, data resource-independent way. 

The Data Access Services (DAS) consist of a set of such virtualization services 
that provide interfaces for querying, updating, transforming and delivering data 
to various data resources via standard web services. The current version, which 
is described in detail by this document, allows users to collect any kind of (meta) 
information of an underlying resource including the used data management 
technology (database system), schema specification, and availiability of the 
resource itself. This information can then be used by clients to specify a query 
that accesses the corresponding database similarly as they would proceed within 
their local environment. Not only single data resources can be accessed but also 
queries to multiple databases can be simultaneously performed using specific 
interfaces provided by the DAS. There are currently some restrictions while 
sending requests to more than one resource but the DAS is in constant 
development and the functionalities are permanently extended. 

 

This documentation is intended to support other developers working in the 
ViroLab project to connect their components and applications with the DAS in 
order to get a unified entry point for distributed data access. It describes the 
main steps to set up and use the services developed and offers a deeper insight 
into the implementation structure of the first prototype. 

1.1. REFERENCES AND SOURCE CODE 
The current DAS JavaDoc source code documentation can be found at the 
following web address: 

http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html 

 

The latest source code of the DAS and appropriate test applications can be 
downloaded from the ViroLab SVN hosted by University of Stuttgart:  

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/ 

 

The access to the repository is restricted only to members of the ViroLab 
consortium. An open source release of the DAS is planned to be provided at the 
end of the project. 

 



 
 

2. PROTOTYPE USAGE 
In order to deal with the DAS, there are some technical prerequisites for 
components and applications regarding hardware and software. In a typical Grid 
infrastructure, the DAS is usually installed at one central location where it can be 
accessed from any external machine. This section gives an overview on how to 
interact with the DAS from a particular machine and also explains basic 
functionalities and some advanced features. 

2.1. RUNNING THE PROTOTYPE 

2.1.1. Operating Requirements 
To communicate with the DAS, which is based on standard web service 
interfaces, an user - could be an application or a component – has to ensure that 
the latest interface description (WSDL specification) is used. These descriptions 
are normally used to automatically generate so-called client stubs, a set of Java 
classes, which allow the interaction with the corresponding services in a smooth 
way. 

The following sections shall provide setup information that is required to use the 
generated classes and to finally interact with the DAS. 

2.1.1.1. Local Hardware Requirements 
The hardware requirements for using the client stubs are not very high as any 
today’s computer hardware able to run Java 5 software should be sufficient. An 
Internet connection is needed in order to call the DAS. As the services are quite 
communication dependent, the optimal configuration will have a low-latency 
Internet connection. 

2.1.1.2. Local Software Requirements 
The software may run on almost every 32-bit operating system like Windows XP, 
Vista or Server 2003 as well as on different Linux distributions like Ubuntu or 
SuSe Linux. It only requires a running installation of the Java 5 Runtime 
Environment, which can be directly downloaded free of charge from SUN’s 
website (http://java.sun.com/j2se/1.5.0/). 

Furthermore, to ensure a proper working with the DAS, a number of third-party 
Java libraries (compiled and zipped in jar files) is needed: 

• activation.jar (http://java.sun.com/products/javabeans/jaf/index.jsp) 

• addressing-1.0.jar (http://jakarta.apache.org/addressing/) 

• axis.jar (http://ws.apache.org/axis/) 

• commons-discovery.jar (http://jakarta.apache.org/commons/discovery/) 

• commons-logging.jar (http://jakarta.apache.org/commons/logging/) 

• jaxrpc.jar (http://ws.apache.org/axis/) 

• log4j.jar (http://jakarta.apache.org/log4j/) 

• saaj.jar (http://ws.apache.org/axis/) 

• servlet.jar (http://jakarta.apache.org/tomcat/) 

• wsdl4j.jar (http://sourceforge.net/projects/wsdl4j/) 

• wss4j.jar (http://ws.apache.org/wss4j/) 



 
 

• xalan.jar (http://xml.apache.org/xalan-j/) 

• xercesImpl.jar (http://xml.apache.org/xerces2-j/) 

• xml-apis.jar (http://xml.apache.org/xerces2-j/) 

• xmlsec.jar (http://xml.apache.org/security/) 

 

Principially, there are two ways to get the latest client stubs. Firstly, one can 
download them from the SVN repository (see part 1.1) or secondly one can 
create them dynamically everytime before using the DAS.  The second option 
would be more flexible but requires additional effort from the developer. He 
needs to modify the source code to create the Java classes on-the-fly during 
program execution. The developer can for example use the Axis tool WSDL2JAVA 
available within the Axis library earlier mentioned or he can use the 
CreateDASStubs class shipped with the DAS, which is also available within the 
SVN repository.  

2.1.1.3. Grid infrastructure requirements 
The main requirement for using the DAS is that it has to be operational and that 
it publishes its web service interaces (WSDL) externally.  Being unavailable, the 
user’s requests will be rejected by the DAS. 

If additional security between a client and the DAS is required due to some 
specific reasons, there is an optional feature that allows secure communication 
with the services - the messages are encrypted and signed. To turn these 
security functionalities on, the provider of the DAS needs to set some property 
values within the DAS configuration files and a valid X.509 certificate needs to be 
in place as well. The client also needs one of these certificates in order to encrypt 
and decrypt the corresponding messages. Both certificates must be trusted by 
the same certificate authority (CA), otherwise the integrity of the exchanged 
messages is not guaranteed. 

Further information on security principles and mechanisms can be found at the 
following website: 

http://gdp.globus.org/gt4-tutorial/multiplehtml/pt03.html 

 

2.1.2. Step-by-Step User Setup 
Step 1: Download the precompiled stubs from the SVN or create them on-the-fly 
using the following WSDL file: 

http://angelina.hlrs.de:8080/wsrf/services/DataAccessService?wsdl  

Step 2: Make sure to have a proper installation of the Java 5 Runtime 
Environment on the local site (simply search for java executable). If not, 
download and install it properly. 

Step 3: Get all the third-party libraries of the software. Please check with Local 
Software Requirements section where to download these files. 

Step 4: Use the stubs together with all the other libraries to include DAS 
interactions within your own source code. One can proceed like the following 
example where a connection to the DAS is established and different resource IDs 
are requested and simply printed out. 
DataAccessServiceAddressingLocator locator = new DataAccessServiceAddressingLocator(); 

EndpointReferenceType endpoint = new EndpointReferenceType(); 



 
 

try 

{ 

  String serviceURI = "http://angelina.hlrs.de:8080/wsrf/services/DataAccessService"; 

  String ogsaService = "http://csharp.hlrs.de:9090/wsrf/services/hospitals"; 

  endpoint.setAddress(new Address(serviceURI)); 

  DataAccessPortType dataService = locator.getDataAccessPortTypePort(endpoint); 

  if(dataService != null) 

  { 

    System.out.println("Connecting to service at: "+serviceURI); 

    DataResourceList result = dataService.getAvailableDataResources(ogsaService); 

    if(result != null) 

    { 

      for(int i = 0; i < result.getResources().length; i++) 

      { 

        ResourceParams currentResource = result.getResources(i); 

        if(currentResource != null) 

        { 

          System.out.println("Found resource: "+currentResource.getResourceID()); 

        } 

      } 

    } 

  } 

  else 

  { 

    System.out.println("Cannot connect to service at: "+serviceURI); 

  } 

} 

catch(RemoteException e) 

{ 

  e.printStackTrace(); 

} 

Step 5: Compile the source code and execute the program. 

2.2. BASIC OPERATIONS 
The DAS currently offers different functionalities for querying distributed data 
resources. The basic features allow the interaction with underlying databases in a 
common way but also provide specific methods such as distributed queries, 
download of publicly available rule sets, and more. Details on the interfaces 
currently available are described on the following website: 

http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html 

 

In order to give users an idea of how to use the basic functionalities and also in 
which order these operations must be invoked, the following parts shall simply 
list the single methods and explain their basic features. For more details on the 
implementation, please refer to section 5. 

Part 1 will explain the main interfaces for accessing remote data resources. Part 
2 will concentrate on the submission of distributed queries to various resources 
concurrently. Finally, part 3 presents one specifically implemented routine to 
download publicly available rule sets while part 4 describes the principle how to 
store specific application data. 



 
 

 

Part 1: Connecting to and querying from remote databases 

• Initialize the corresponding service and resource. The Initparams 
argument of the method requires two parameters, the service URL and 
the abstract resource ID (typically an unique name). 

  
 boolean init(InitParams params) where params is used the following way: 
 
     InitParams initParams = new InitParams(); 
     initParams.setServiceLocation("http://csharp.hlrs.de:9090/wsrf/services/hospitals"); 
     initParams.setResourceID("ROME"); 

 

• Collect the data resource information of a particular resource. This 
information includes the database technology (e.g. MySQL, Postgres) and 
a list of keywords indicating available tables - this is currently a 
prerequisite, refer to section 2.4. 

 
 DataResourceInformation getDataResourceInformation(String resourceID) where resourceID 
 is “ROME” 

 
• Query for the schema definition. This principal is currently based on plain 

SQL statements. To request schemes from different databases, please 
refer to the according SQL statements. 

  
 DataResult getDataFromQuery("Describe currentTableName") -> currentTableName obtained 
 from previous request 

 
• Perform a concrete query. To query different databases, please refer to 

the according SQL statements. 

 
 DataResult getDataFromQuery("Select * From currentTableName") or whatever you want… 

 

Part 2: Submitting distributed queries 

Submitting a distributed query to multiple resources is currently restricted to one 
specific method: 
 
DataResult submitDistributedQuery(java.lang.String queryString) 

 
This method requires a real SQL query as input and then automatically performs 
the following actions: 

• Checks which resources are available 
• Requests data resource information of each available resource 
• Compares the keywords to the tables given by the query 
• If corresponding resources are found, each of them is queried using the 

input statement 
• Finally, the results are merged and the resource ID is added to each new 

data row as an additional primary key 
 



 
 

Part 3: Requesting publicly available rule sets 

To deal with such rule sets, one specific method was implemented that handles 
all relevant activities (download, version checking, submission to requester) 
based on the requirements of the DRS application. 

The method can be directly called by the DRS or any other component. The only 
necessary argument to be passed to the function is the type of rule sets wanted 
while the version argument is optional. These arguments are simple string types 
and must have the following input values. 

• String type: ANRS|HIVDB|REGA 

• String version: e.g. 4.1.0 (optional) 

 

The result can either be a notification message (String) saying that the current 
rule set version is up-to-date (‘Your current version is up-to-date’), or an XML 
document (String) including the latest rule set. 

To point out the functionality, there is a simple test application named 
AccessRulesetsClient. It is a Java Swing application, which allows the user to 
input the relevant information (required by the above explained method 
RequestRuleSets) and then starts to process this input by downloading a new 
version or to find out that the current one is up-to-date. The test application is 
available in the SVN at 

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/
TestClients. 

 

The application can be started by typing the following into a command line: 

ant runRuleSetClient 
 

The following window appears on the desktop. 

 

 
Figure 2.1: Selecting the type of rule sets 

 

When the version is up-to-date, the following notification will be shown. 

 



 
 

 
Figure 2.2: Received notification message 

 

If a newer rule set version is available, a message box will pop up and ask 
whether to save the newer version or not (it will be saved as an XML file). 

 

 
Figure 2.3: Save the newly available rule sets 

 

Part 4: Storing relevant application data in a specific database 

In order to track specific experiment results and user inputs related to these 
experiments, every application should store their input as well as output data in 
a corresponding database. In the current version, the DAS provides one 
particular method that allows to store appropriate application data: 

 
boolean storeApplicationData(AppStoringParams appStoringparams) 

 

It should be called whenever an application wants to store its data. The input 
argument required by the function consists of two parameters, which should be 
of the following input format: 

• AppType appType: DRS|RegaAlignment|RegaHIVSubType 

• String[] values: an array of values to be stored 

 

Internally, the method firstly analyzes the application type and based on type 
value, the particular application-dependent function is called and all passed 
values are stored in the corresponding database (refer to section 5.3). 

2.3. ADVANCED FEATURES 
One advanced feature in the current release of the DAS is the integration of the 
services together with the authorization principle of Shibboleth. It is in an early 
stage of development so that the final user authorization is more or less 
implemented in a static way, meaning that as long as a user carries a specific 



 
 

attribute such as a role, institution, etc. he might be allowed to access a 
particular resource. There is not a real dynamic procedure for access control 
available yet but the future releases of the DAS will also contain such a dynamic 
authorization model where a so-called Policy Decision Point (PDP) can be asked 
whether a user has the necessary attributes to enable his access to a particular 
resource. For more information on Shibboleth and the principle used in ViroLab, 
please refer to the deliverables D2.2 and D3.2 submitted in month 12 and 9 
respectively. 

2.4. KNOWN PROBLEMS 
The current version of the DAS software is in its first release but most of the 
basic functionality is considered stable. There are actually no known bugs but 
this might change while the software is in daily usage. Nevertheless, the DAS has 
got some limitations and yet unimplementd features, which shall be roughly 
listed and explained, and which will be covered in future releases. 

 

1. Yet unimplemented features: 

• Dynamic user authorization: Using a PDP and user-defined policies 
(usually defined and managed by data providers themselves) to 
control the access to different resources 

• Meta query language to simplify communication with services: 
Developing a higher-level language that allows application users as 
well as developers to query resources without using real SQL 
statements but rather common well-known terms 

• Parallelization of distributed queries: Develop an algorithm that 
enables parallel processing of a distributed query – currently done in 
a sequential order - to increase performance and reliability of user 
queries 

• Automatic registration of newly available resources: Design a wizard 
for data providers that facilitates automatic registration of their 
resources at the DAS 

• Functionalities that enable easy and efficient requesting of schema 
specifications 

• Application-specific transformations that transform data or data 
formats for specific needs of ViroLab applications 

 

2. Current limitations 

• Submission of distributed queries: 

- All tables must have the same schema 

- The database technologies used should be the same 

- The keywords identifying the content of a data resource must 
be equal to the database table names (requirement for 
OGSA-DAI only) 

- The results contain a new primary column: the resource ID 

• Schema retrieval: Schema specifications can only be requested 
using corresponding SQL statements like Describe table for MySQL 
databases 



 
 

• Authorization: Authorisation is more or less static, granting either 
full access or no access to all service methods (access denied!) 

• Query language: DAS interfaces must be queried using concrete 
SQL statements instead of an abstract query language 

• Application data storage: The current implementation is limited to 
one specific ViroLab application – Drug Ranking System (DRS) – but 
further applications will follow 

 



 
 

3. INTERFACE REFERENCE GUIDE 
Since the current release of the DAS provides standard web service interfaces, 
one typically needs a client to interactively test its functionality. Therefore, a 
distributed database browser was implemented, which allows users not only to 
browse the resource’s content like its schema and data but also to manipulate its 
entries. 

The GUI of the ‘Distributed Database Browser’, which can be seen in Fig. 3.1, is a 
simple but very helpful application to quickly overview available resources and 
their contents. It presents on one screen all information about the selected 
resource including available tables, table schemes, and table contents. One can 
perform specific selections on the tables and if a user has permission to insert, 
update, or delete data sets, this can also be directly done via this application. 

 

 
Figure 3.1: The main ‘Distributed Database Browser’ window 

 

In order to facilitate the work with the application, the main functionalities shall 
be roughly described: 

• Show data services: Visualizes all available data services and their 
corresponding resources based on the information in the central data 
service repository (see upper left part) 

• Add new service: Registers a new data service in the central repository 
used by the DAS – see Fig. 3.2 

• Delete a service: Deletes a data service from the central repository 



 
 

 

 
Figure 3.2: Pop-up window for adding a new data service instance 

 

• Init resource: Initializes the selected resource according to the service URL 
provided 

• Show tables: Displays the available tables including the number of rows 
and the latest update time (upper right part) 

• Show table schema: Displays the table schema (central part). 

• Show table contents: Displays the table contents based on the query 
provided (lower central part) 

• Insert data set: Adds a new data set to the current table (if permitted) 

• Update data set: Updates a selected data set (if permitted) – see Fig. 3.3 

• Delete data set: Deletes a selected data set (if permitted) 

• Exit: Closes the application 

 

The application is currently in an early stage of development so that not all 
planned functionalities of the DAS have been implemented so far. A new 
prototype is considered for the end of 2007, which then will include also the 
capabilities of submitting queries to multiple resources at the same time. 

In parallel, a second user interface is developed that almost provides the same 
functionalities but implemented as a portlet for the project portal, which is based 



 
 

on the Google Web Toolkit (GWT) instead of being a stand-alone Java 
application. 

 

 
Figure 3.3: Pop-up window for updating a selected data set 

 



 
 

4. TROUBLESHOOTING Q&A 
Q: Upon submitting a DAS query, the system responds with an error saying that 
it is unable to connect to the DAS (ConnectException – connection refused). 

A: The DAS may be down for maintenance or you may be experiencing network 
problems. If the situation persists, please contact Matthias Assel (assel@hlrs.de). 
 

Q: The Axis engine reports an error that it could not find the target service to 
invoke. 

A: Check the service URL you are using. This error typically indicates a 
malformed or incorrect URL. 

 

Q: The DAS complains with an exception that the ‘Passed argument cannot be 
null’ (IllegalArgumentException). 

A: While calling any of the interfaces provided, please make sure that none of 
the arguments passed is null. 

 

Q: The DAS complains with an exception that the ‘Passed argument cannot be an 
empty string’ (IllegalArgumentException). 

A: While calling any of the interfaces provided, please make sure that none of 
the string arguments passed is empty. 

 

Q: The DAS answers with the exception ‘You do not have the permission to 
perform this action on the resource’ (DASException). 

A: You are actually not authorized to perform the chosen action on the 
corresponding resource. This may have two reasons. Firstly, the data provider 
has denied access to his resources for particular users due to some personal 
decisions (-> contact the responsible data provider), or secondly your institution 
is not well prepared for the ViroLab security infrastructure (-> contact your local 
responsibility). 

 

Q: While executing a query on a particular resource, the DAS throws an 
exception saying that it is ‘Unable to perfom the query on the resource’ 
(DASException). 

A: This error might occur basically if a query is incorrect or malformed and 
cannot be interpreted by the corresponding data resource technology. Please 
check your statement carefully and try to resubmit the query. In case your 
queries are correct but you are still getting the error, please contact Matthias 
Assel (assel@hlrs.de) who will be able to check the logs for further information. 

 



 
 

5. IMPLEMENTATION STRUCTURE 

5.1. PRODUCT USE CASES 
The DAS are designed as a set of services that virtualizes different underlying 
resources so that users and applications can access them in a transparent way. 
Figure 5.1 depicts multiple requesters using different services provided by the 
DAS in order to deal with several databases as if they were one large single data 
resource. 

 

 
Figure 5.1: General architectural overview of the DAS 

 

A typical use case explaining the core functionalities of the services is shown in 
figure 5.2. Each single step - starting with the user’s request up to the response 
sent back by the DAS - is highlighted within this chain by one specific block. 
Basically, all the components play a particular role within this workflow and for 
each of them different interfaces needs to be provided and implemented. For 
pure data access, the functionalities provided by the OGSA-DAI toolkit are 
sufficient, but additional effort on security, mapping of user statements into 
resource-dependent statements as well as transforming query results into 
application-readable statements, is needed. 

 



 
 

 
Figure 5.2: A typical use case within the ViroLab scenario 

 

5.2. PRODUCT COMPONENT MODEL 
An overview on the main components of the DAS and their dependencies among 
each other is visualized in figure 5.3. 

 

 
Figure 5.3: Main components of DAS 



 
 

• Authentication: The authentication module is responsible for the 
identification of a user based on his credentials 

• Authorization: The authorization interface decides whether a user is 
authorized to perform a certain task by mapping user attributes on data 
handling activities and resources 

• Cryptography: The service provides capabilities for decrypting incoming 
and encrypting outgoing messages to ensure secure transmission 
between different endpoints 

• Data Resource Discovery: The discovery service virtualizes the location 
of data resources by mapping common language terms onto data 
resource-dependent statements 

• Data Access: The data access infrastructure is the most important part 
of the overall system. It provides interfaces to access different types of 
resources. Its main functionalities are based on the OGSA-DAI toolkit. 

• Data Transformation: The transformation service provides methods for 
dynamically adding new transformation schemes in order to change the 
output format conceptional for a user application 

• Messaging: The messaging subcomponent of the notification handling 
infrastructure contains mechanisms for publishing, subscribing to, and 
managing subscription to notifications about single events or families of 
interest 

• Monitoring: The monitoring service is responsible for recording all 
transactions that occur inside the data access subsystem 

• Repository: The repository will be used for storing any kind of 
intermediate data 

• Laboratory Database: The laboratory database acts as a long time 
storage with a relatively short access time and can be used also by other 
components of the ViroLab infrastructure like for example the 
Provenance system 

5.3. DETAILED IMPLEMENTATION MODEL 
Since the DAS is based on an service-oriented architecture and its functionalities 
are provided as standard web service interfaces, the focus for describing the 
implementation model lies on one specific service implementation class 
(‘DataAccessServiceImpl’ – see API description for further details), which 
includes almost two-thirds of the main interfaces. For more details on the design 
and implementation of single DAS components, please refer to deliverable D3.3. 

The interfaces can be summarized into two main parts. The first part contains 
standard interfaces for querying remote databases including one specific 
interface for submitting distributed queries, whereas the second part includes 
particular methods for requesting publicly available rule sets and for storing 
application-dependent data. 

 

Part 1: Connecting to and querying from remote databases 

Most of the interfaces provided are directly connected with corresponding OGSA-
DAI interfaces. Figure 5.4 depicts the specific use case where a user wants to 
invoke a query using the interfaces of the DAS. On the right side of the picture, 
the involved components of OGSA-DAI and their interactions are listed. Based on 



 
 

the request, different activities are performed after an authorization mechanism 
has granted access to them. 

 

 
Figure 5.4: Use case showing a typical data access request and corresponding 

interactions with OGSA-DAI 

 

They are typically connected with one data resource accessor, which uses a 
database-dependent driver to establish a connection with the underlying 
resource. 

When dealing with multiple data providers, each of them usually has its own 
installation of a data access system including the data access service linked with 
an OGSA-DAI data service. The coordination of all these single systems requires 
one central entry point, which acts as the only “visible” and accessible data 
access system, and which hides all other data access systems from the users. In 
theory users should be unaware that they are using a federation rather than a 
single data resource. Currently, the DAS offers one specific functionality that 
handles a federated query. The main operations are similar to the one shown in 
figure 5.4 with the difference that this has to be done many times. 

 

Part 2:  

• Requesting publicly available rule sets 

The main usage of the RequestRuleSets method has already been decribed in 
section 2.2 so that only the different steps, which are transparent to the users, 
shall be explained in more detail. The following diagram schematically shows the 
control flow of the RequestRuleSets function in a sequential order. 

 



 
 

 
Figure 5.5: Control flow of the specific RequestRuleSets method 

 

One can see that the function reverts to OGSA-DAI’s data access capabilities, 
which are used to download files from an online data repository and also for 
storing relevant information in a local database. This local information is used to 
manage the current available and used versions of the rule sets. The diagram 
also illustrates the interactions between the DAS specific components/services 
and the corresponding interfaces offered by OGSA-DAI. 

 

• Storing application-dependent data 

Based on the general description in section 2.2, the following diagram shall 
explain the internal steps performed during the processing. Depending on the 
current application type, a particular internal application-related function is 
called, which performs relevant data transformation on the values provided. 
Once these data manipulations are finished, the OGSA-DAI functionalities for 
accessing distributed databases are used by the method in order to store the 
values in the corresponding database. 

 



 
 

 
Figure 5.6: Internal flow of StoreApplicationData method 



 
 

6. PRODUCT TESTING 
According to Work Package 4 integration guidelines (specified in D4.2), each 
component itself should perform a unit testing procedure for its functions and 
methods. For verifying reliability, efficiency, compatibility, integrity, and usability 
of the DAS functionalities, a set of unit test cases were written and used to check 
the source code including different functions of the API: 

 

• TestServiceInitialization: Initializes a particular service and its corres-
ponding resource 

• TestSourcesAvailability: Checks the availability of particular resources 

• TestDataResourceInformation: Collects the meta-data of the resource 

• TestSQLStatements: Performs different queries and verifies the data 
retrieved 

• TestRequestRulesets: Checks whether different types of rule sets can be 
requested 

• TestSubmitDQ: Tests the submission of queries to multiple data resources 

• TestStoreAppData: Tests the storage of application data (Currently only 
for the DRS application) 

 

The GUI of the JUnit toolkit, which is shown in figure 6.1, can be used to 
visualize the testing procedure and to facilitate the testing process. One can 
simply load the test class and start the procedure by clicking the ’run’ button. 

The screenshot below depicts the successful test of the above explained testing 
routines. 

 

 
Figure 6.1: Visualization of DAS unit test cases 



 
 

7. CONTACT INFORMATION AND CREDITS 
For additional information, questions, errors, bugs etc. please contact the 
following author: 

• Matthias Assel (assel@hlrs.de) 

 

The author also wants to thank all who contributed to this work, in particular: 

• Aenne Löhden (USTUTT, Stuttgart, Germany) 

• Bettina Krammer (USTUTT, Stuttgart, Germany) 

• Stefan Wesner (USTUTT, Stuttgart, Germany) 

• Piotr Nowakowski (ACK Cyfronet AGH, Kraków, Poland) 



 
 

8. ABBREVIATIONS 
 
Abbreviation/Term Explanation 
API Application Programming Interface 
CA Certificate Authority 
DAS Data Access Services 
DRS Drug Ranking System 
GPL GNU General Public License 
GT4 Globus Toolkit 4.0 
GUI Graphical User Interface 
jar Java Archive 
OGSA-DAI Open Grid Services Architecture Data Access and 

Integration 
PDP Policy Decision Point 
SOAP Simple Object Access Protocol 
SQL Structured Query Language 
SVN Subversion, a revision control system 
UML Unified Modelling Language 
URL Uniform (or Universal) Resource Locator 
ViroLab A virtual laboratory for decision support in HIV 

treatment 
WSDL Web Services Description Language 
XML Extensible Markup Language 

 


