
Deliverable D3.4
Integration of presentation layer and session
manager, workflow provenance system and

process flow template -
report and demonstration

Project Start: 01/03/2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-027446

Website: http://www.virolab.org

Due-Date: 29-02-2008

Delivery: 04-03-2008

Lead Partner: ACC CYFRONET AGH

Dissemination Level: Public

Status: Final

Approved: Steeting Committee, Quality
Board

Version: 1.0

Log of Document

Version Date Changes Summary Authors
0.1 23/01/2008 Table of contents proposition Tomasz Gubala

0.2 24/01/2008
Fixed content, ready for
distribution inside Consortium

Marian Bubak, Tomasz Gubala

0.3 18/02/2008 Introductory part (2.) added Tomasz Gubala
0.4 19/02/2008 Added figures to part 2. Tomasz Gubala

0.5 25/02/2008
Added Application Repository
Client status description

Joanna Kocot

0.6 26/02/2008
Added description of the GOI
and computation access
security mechanism

Tomasz Bartyński

0.65 26/02/2008 Included summaries Piotr Nowakowski

0.7 26/02/2008
Added initial description of
monitoring, GRR and GrAppO
integration

Bartłomiej Łabno

0.8 27/02/2008 Added section reporting the
current status of GSEngine

Eryk Ciepiela

0.9 27/02/2008
Added section reporting the
current status of Grid
Resources Registry

Marek Kasztelnik

0.10 27/02/2008
Added section reporting
integration of GSEngine with
EPE and EMI

Eryk Ciepiela

0.11 27/02/2008 Added description of DAC Piotr Nowakowski
0.12 27/02/2008 Updated publications list Tomasz Bartyński

0.13 27/02/2008
Merged contributions from
HLRS and UvA; status figure
updated

Matthias Assel, Alfredo
Tirado-Ramos, Tomasz
Gubala

0.14 27/02/2008

Extending description of
integration between GRR,
GRR and monitoring system,
updating articles section

Marek Kasztelnik

0.15 27/02/2008
Integration of GrAppO and
monitoring system

Joanna Kocot

0.16 28/02/2008
Section on EMI integration
with GSEngine Server (3.2)
extended

Daniel Harezlak

0.17 28/02/2008 Minor corrections to 3.3,
GrAppO in 2.

Joanna Kocot

0.18 28/02/2008
Provenance section (2.3).
PROToS – QUaTRO
integration (6.2).

Jakub Wach

0.19 29/02/2008
Provenance integration with
monitoring infrastructure
(section 6.1)

Michał Pelczar

0.20 29/02/2008
Expended section reporting
integration of GSEngine with
EPE

Włodzimierz Funika, Dariusz
Król

0.21 29/02/2008
EMI – GSEngine use case text
improvements

Daniel Harezlak

0.22 29/02/2008
Moved part of EPE-GSEngine
integration to D2.3

Eryk Ciepiela, Maciej Malawski

ViroLab D3.4 -version 1.0 Page 2 of 44

Version Date Changes Summary Authors

0.23 29/02/2008
Minor changes, collab status
section added, references,
bibliography

Tomasz Gubala

0.24 29/02/2008

Update of sections 2.3, 6.1
and 6.2. Provenance
publications added to
publication list in section 7
and to references.

Bartosz Balis

0.25 03/03/2008 Editing changes Marian Bubak, Tomasz Gubala
1.0 04/03/2008 Final additions Tomasz Gubala

ViroLab D3.4 -version 1.0 Page 3 of 44

Table of Contents
1. EXECUTIVE SUMMARY...6

2. CURRENT STATUS OF THE VIRTUAL LABORATORY... 7

2.1. GRIDSPACE ENGINE AND RUNTIME SERVICES...8
2.1.1. GridSpace Engine.. 9
2.1.2. Data Access Client (DAC)... 11
2.1.3. Experiment Repository (Application Repository Client)..12
2.1.4. Grid Operation Invoker (GOI)...13
2.1.5. GridSpace Application Optimizer (GrAppO)...13
2.1.6. Grid Resources Registry.. 13

2.2. DATA ACCESS... 14
2.3. PROVENANCE... 15
2.4. DEVELOPMENT STATUS SUMMARY... 15

3. INTEGRATION OF RUNTIME SYSTEM WITH MIDDLEWARE AND PRESENTATION LAYER 18

3.1. INTEGRATION WITH EXPERIMENT PLANNING ENVIRONMENT.. 18
3.2. INTEGRATION WITH EXPERIMENT MANAGEMENT INTERFACE... 18
3.3. INTEGRATION WITH MONITORING INFRASTRUCTURE THROUGH EVENTS PROPAGATION... 21

4. INTEGRATION OF COLLABORATION TOOLS WITH PORTAL, DAS AND DRS........................... 24

5. DATA ACCESS SERVICE.. 26

5.1. INTEGRATION WITH VIROLAB PORTAL...26
5.2. INTEGRATION WITH EXPERIMENT PLANNING ENVIRONMENT.. 29
5.3. OUTLOOK ON FUTURE WORK...29

6. PROVENANCE TRACKING SYSTEM (PROTOS).. 31

6.1. INTEGRATION WITH MONITORING INFRASTRUCTURE... 31
6.2. INTEGRATION WITH QUATRO IN PRESENTATION LAYER...33

7. LIST OF PUBLICATIONS..36

8. SUMMARY..38

ViroLab D3.4 -version 1.0 Page 4 of 44

List of Figures

FIGURE -1: DIFFERENT LAYERS OF THE VIROLAB VIRTUAL LABORATORY................................7

FIGURE -2: SIMPLIFIED ARCHITECTURE OF THE VIROLAB VIRTUAL LABORATORY.............. 8

FIGURE -3: CURRENT STATUS OF THE DEVELOPMENT.. 16

FIGURE -4: VIRTUAL LABORATORY IMPLEMENTATION TIMELINE (FROM D3.2)..................... 17

FIGURE -5: PROCEDURE OF REGISTERING GSCRIPT INTERPRETER IN THE EPE.................... 18

FIGURE -6: INTEGRATION POINTS BETWEEN EMI AND GRID SPACE ENGINE............................19

FIGURE -7: GENERIC INTERACTION DIAGRAM... 20

FIGURE -8: COMMUNICATION BETWEEN GRID RESOURCES REGISTRY AND MONITORING
SYSTEM.. 21

FIGURE -9: EXCHANGE OF EVENTS BETWEEN GRID RESOURCES REGISTRY AND
MONITORING SYSTEM..22

FIGURE -10: DATA EXCHANGED BETWEEN GRAPPO AND ITS PEERS (GRR, MONITORING)
ABOUT RESOURCES CONDITION...23

FIGURE -11: COMMUNICATION PROTOCOLS BETWEEN GRAPPO AND ITS SOURCES OF
INFORMATION .. 23

FIGURE -12: SCREENSHOT OF THE DASPORTLET... 26

FIGURE -13: COMMON VIROLAB DATA REQUEST... 27

FIGURE -14: PROCESS FLOW OF A DISTRIBUTED DATA QUERY.. 29

FIGURE -15: PROTOS ONTOLOGY MODEL..32

FIGURE -16: QUATRO COMPONENT INTEGRATION..33

FIGURE -17: PROTOS DRE INTERFACE AND DATA MODEL.. 34

FIGURE -18: QUERY CONSTRUCTION PROCESS... 35

ViroLab D3.4 -version 1.0 Page 5 of 44

1.Executive Summary
This document constitutes the description of the second prototype of ViroLab
Virtual Laboratory software, developed after 24 months of the project duration
and encompassing integration of presentation layer, collaboration services and
the workflow provenance system. This prototype is based on the design defined
in the specification deliverable [D3.2]. A website featuring the properties and
capabilities of this Virtual Laboratory can be found at http://virolab.cyfronet.pl/.

Here, a brief description of the overall architecture of the ViroLab Virtual
Laboratory prototype is provided and the main focus of this deliverable is a
presentation of the integration of VL components. As indicated, the prototype of
the Virtual Laboratory incorporates specific functionality of its constituent
components. This functionality enables it to be applied to executing real-life
experiments from the virology domain.

The deliverable is structured as follows:

• Section 2 presents the current status of Virtual Laboratory development.
This section is not intended as an in-depth description of VL components
but rather as a brief summary, preceding subsections devoted to VL
functionality elements and detailing their current status.

• Section 3 discusses integration of the runtime system with middleware and
presentation layers.

• Section 4 presents collaboration tools that have been integrated for use
with the ViroLab Virtual Laboratory.

• Section 5 presents the Data Access Service and its integration with the
ViroLab Portal.

• Section 6 presents the provenance tracking system and its interoperation
with other components of the ViroLab Virtual Laboratory.

• Section 7 contains a list of publications relevant to Virtual Laboratory
development.

• Section 8 contains closing remarks.

The demonstration of the capabilities of the integrated system is distributed
throughout the document. Instead of having one, possibly confusing chapter on
demonstration the state of integration is presented in each section (through an
example use case within the system enabled by a certain integration point).

ViroLab D3.4 -version 1.0 Page 6 of 44

http://virolab.cyfronet.pl/

2.Current Status of the Virtual Laboratory
The ViroLab Virtual Laboratory [Bubak07, Gubala07] combines a set of tools and
services that provide the HIV research groups with a collaborative workspace to
perform virtual (in-silico) experiments, gather their results, share ideas among
the members and, finally, help the medical doctors treat HIV-infected patients.
In order to achieve this ambitious goal, the WP3 team performed a series of
important steps that resulted in specific deliverable documents produced in the
earlier stages:

• The state-of-the-art research to learn what solutions, methods, and
technologies are already available that could help building the Virtual
Laboratory infrastructure (see [D3.1]);

• The ViroLab Virtual Laboratory design that encloses the architecture and
the future behavior of the system, its use cases, functionalities and
implementation plans (see [D3.2]);

• After the first part of the realization process the work package delivered a
first prototype of the core Virtual Laboratory components along with
accompanying manuals and documentation (see [D3.3] and appendices).

Figure -1: Different layers of the ViroLab Virtual Laboratory.

To briefly introduce the idea of the ViroLab Virtual Laboratory (Figure -1) let us
start with the conceptual view of the solution and the intended classes of users:

• Experiment developers, who combine their technical skills and the
knowledge of the virus analysis domain to plan new types of virtual
experiments taking place inside the Virtual Laboratory

• Scientists, who are the main recipients of the experiments built by
developers and who use these experiments to extend their knowledge of
the virology and epidemiology field

• Clinical virologists, who use the knowledge of (possibly many) virology
experts, and dedicated decision support tools, to help the medical doctors
in treating HIV-positive patients.

ViroLab D3.4 -version 1.0 Page 7 of 44

These users perform their respective tasks employing dedicated tools (that are
grouped in the interfaces layer of Figure -1). Then, a generic runtime component
is provided to be able to support (with software services and hardware
machines) all the tasks performed by the users with their upper-layer tools. This
runtime part serves as a connection to both other tools and to lower-layer
resources dispersed in the virtual laboratory. Those are mainly (clinical) data
sources and analysis computational services, although some specific task-
oriented services are also available there (e.g. Experiment Repository, laboratory
Result Data Store etc. – please consult [D3.3] for more detailed description of
runtime services). Finally, these services run on physical equipment (the bottom
layer).

This document reports on integration of the components of the Virtual Laboratory
and gives the development progress report. All the changes and advancements
in this document are given in relation to the state of the First Prototype that is
described in [D3.3] and the authors assume the reader is familiar with this
document. Below there is a summary of the advancements reached in the parts
of the Virtual Laboratory that are developed within WP3 (see Figure -2) and later
sections will present the progress and the state of integration in more detail.

Experiment
Repository

Unified
Data

Sources

Presentation
Dedicated tools for different classes of users:

Portal, IDE, application specific GUI

GridSpace Engine
Executes in-silico

experiments

Data Access
Secure access
to multiple

sources of data
in uniform way

C
om

pu
ta

ti
on

In
vo

ca
ti

on
Inter
action

C
ol

la
bo

ra
ti

on
T
oo

ls

Grid
Resources
Registry

Contains descriptions
of available resources

Ex
pe

ri
m

en
t

sa
ve

/l
oa

d

Search

Resources
state

D
at

a
re

tr
ie

va
l
an

d
st

or
in

g

PROToS
Provenance

Tracking System
Tracks

experiments
provenance

Queries

Events regarding
provenance

Middleware and
Monitoring

Support for multiple
technologies incl.:
WS, EGEE, MOCCA

Laboratory DB
for experiment

results

Unified
Data

Sources
Unified
Data

Sources

Figure -2: Simplified architecture of the ViroLab Virtual Laboratory

2.1.GridSpace Engine and Runtime Services
As thoroughly described in [D.3.3], GridSpace Engine [Ciepiela07] is

considered as a facade service that provides access to virtual laboratory
functionalities. Such a facade is intended to be employed by vast range of
existing and foreseen dedicated tools e.g. by those contained in presentation
layer. Most notably, it is an architectural unit responsible for running in-silico
experiments as well as a proxy facade for Data Access Service. In order to fulfil
these responsibilities GridSpace Engine directly engages several specialized
architectural units such: Grid Operations Invoker, Data Access Client and
Experiment Repository Client whose status is discussed in details in further
paragraphs.

ViroLab D3.4 -version 1.0 Page 8 of 44

2.1.1.GridSpace Engine

Compared to status from Section 4.1 of [D.3.3] a significant progress took
place that results in a number of new features, enhancements and corrections.

• GSEngine API – GSEngine provides simplified and compact yet powerful
Java API that constitutes uniform access for GSEngine capabilities
concealing underlying implementations e.g. local, embedded engine
implementation or remote engine access though wire protocol.

o Application URI – GSEngine API introduced the concept of
Application URI that unifies identification of application. This way of
application identification is easily extendible since it’s plain
hierarchical URI. It denotes where application is stored and how it is
to be provided to the engine. E.g. prefix ‘apprepo’ denotes that the
source code of the application can be found in the Application
Repository e.g. virtual laboratory Experiement Repository. Prefix
‘apprepo:svn’ denotes that application is stored in the Application
Repository implemented over Subversion (SVN) source code
management server. Furthermore, the ‘callback’ prefix denotes that
application code would be provided by caller tool through callbacks
(discussed in below). Currently supported prefixes are:
‘apprepo:svn’ and ‘callback’.

o Evaluation Callback – application while calling GSEngine API has
to have provided implementation of Evaluation Callback interface,
that enables interaction between engine and caller application. It is
employed for e.g. user data inputs, accessing locally stored files or,
optionally, to provide application source code.

• Ruby Interpreter – GSEngine has embedded Ruby interpreter, namely
JRuby, properly customized to fit to GSEngine.

o JRuby 1.1 – Currently GSEngine uses the newest version of JRuby
– 1.1-RC1 that surpasses its predecessor with enhancements such
as mechanism for easily pluggable gems and Java libraries or
unification of Ruby loadpath and Java classpath that improves
interoperability between Ruby and Java.

o Source code resolvers – JRuby is extended with several source
code resolvers that are able to upload application source code e.g.
from Application Repository through Application Repository Client,
or to ask caller application for application source code through
Evaluation Callback interface.

o Injection of application context objects – Applications
interpreted within JRuby interpreter are provided with application
context information through injection of global constant objects. It
allows for instance accessing functionalities of GSEngine such as
interactive user data input.

ViroLab D3.4 -version 1.0 Page 9 of 44

• Runtime libraries – Ruby interpreter of GSEngine comes along with a set
of runtime libraries that enables to access functionality of virtual
laboratory from the level of experiment code. New libraries are easily
addable by simply placing them in the classpath of GSEngine. Aside the
most notable and robust virtual laboratory runtime libraries such as Data
Access Client or Grid Operations Invoker (discussed further) some
additional libraries have been and are being provided.

o Data input library – A dedicated library is provided to access files
stored locally on caller application file system, and to interact with
caller application in order to get some user data through e.g. forms.

o Domain ontology events publisher – A dedicated library for
publishing domain-related events e.g. reporting new drug ranking
issued, that can be used from the level of source code of
application.

• Data Access Facade – Apart from its interpreter GSEngine proxies Data
Access Server so that data sources can be accessed not only from the
level of code of application through Data Access Client runtime library but
also by arbitrary tools through GSEngine API.

• Monitoring ability – Application launched within GSEngine interpreter
are monitorable via events reporting. Engine reports events corresponding
to application start, application end, grid operation invocation start and
grid operation invocation end.

o Application Correlation Identifier (ACID) – Events are
correlated owing to unique identification of application run. Each run
is assigned with unique ACID that supplements each event reported
by GSEngine.

• Integration with Shibboleth security infrastructure – GSEngine can
operate in Shibboleth security infrastructure since it accepts application
evaluation requests that contain credential of ‘user handle’ which is
afterwards stored in application context and passed to security-enabled
Data Access Client, Grid Operations Invoker and Application Repository
Client.

o Authorized Access – GSEngine is secured from access by
unauthorized parties, namely, parties not belonging to any trusted
Shibboleth Home Organization.

• Remote Access – GSEngine API has currently two implementations: one
is the GSEngine embeddable in the same Java Virtual Machine as caller
application, and the second one is accessing remotely staged GSEngine
Server. The latter one involves several items.

o GSEngine Protocol – a protocol was developed that enables
interaction between caller application and GSEngine Server over a
wire. It defines messages exchanged between the client and the
server.

ViroLab D3.4 -version 1.0 Page 10 of 44

o CompTalks – a novel simple framework for specifying interaction
between communicating peers, over which variety protocols may be
defined. It enables pluggable transport layers. The default, built-in
transport employs TCP. GSEngine Protocol was build upon this
framework.

o GSEngine Server – GSEngine core wrapped as CompTalks peer
able to interact through GSEngine Protocol over the wire.

o GSEngine Client – a library that implements GSEngine API that is
able to interact wirth GSEngine Server through GSEngine Protocol
over the wire.

• Command line tools – GSEnigne is itself an API and a library that comes
along with the simple command line tools that simply foster the engine to
be launched via command line:

o gsel – a tool to run GSEngine locally only for a one run of given
application.

o gses – a tool to run GSEngine Server that embeds GSEngine and
accepts application evaluation requests.

o gsec – a tool to run GSEngine Client that can interact with remote
GSEngine Server.

o Integration with Shibboleth IDP Client – both ‘gsel’ and ‘gsec’
command line tools are integrated with developed Shibboleth IDP
Client that can authenticate user and acquire Shibboleth handle for
user’s Shibboleth Home Organization.

• Security mechanisms in computation access - The GSEngine creates a
global variable that holds the Shibboleth handle. The Grid Operation
Invoker (described later) is able to invoke Grid Operations on “Shibboleth
enabled” Web Services. Such services require a client to authorize by
providing the handle passed by the GSEngine handle. If a computational
resource is indicated as being secured, the GOI transparently includes
Shibboleth handle in the operation invocation.

The future work on GSEngine will be carried out in several directions:

• To make GSEngine Server full-featured container providing isolation and
secure sandbox for applications’ runs.

• To secured transport layer in GSEngine Server and GSEngine Client
communication.

• To design and develop a generic user interface libraries to render
application UI on the caller application-side

2.1.2.Data Access Client (DAC)

The Data Access Client provides experiment developers with access to remote
data sources. The DAC is a part of the GridSpace engine devoted to
communicating with the underlying data sources, which comprise the ViroLab

ViroLab D3.4 -version 1.0 Page 11 of 44

architecture. Specifically, the Data Access Client currently enables access to the
following:

• Standalone databases – any SQL-compliant database can be directly
referenced from within the experiment script. It is only necessary to
supply the URI at which the DBMS is located and the name of the
database schema in question. Communication is enabled via JDBC,
through JRuby.

• Data Access Service – the Data Access Service overlays a number of
data sources which represent the hospitals participating in the ViroLab
project. It enables secure and uniformized access to hospital laboratory
data, using the REGA schema. As the DAS is exposed as a WSRF service,
the DAC takes care of communicating with this service and formulating the
proper queries. The experiment developer is provided with a simple API
which enables submission of queries using a JRuby data access object.
Security is supported, following integration of the Shibboleth
authentication mechanism. Moreover, the Data Access Client provides
backend implementation for the Data Access Facade, described below.

2.1.3.Experiment Repository (Application Repository
Client)

Application Repository Client is a part of GridSpace Engine responsible for
accessing Experiment Repositories where experiment plans are stored and
versioned. A sample Experiment Repository based on Subversion (SVN) is hosted
by HLRS at and can be accessed through
https://svn.gforge.hlrs.de/svn/virolab/trunk/experiments/. The Application
Repository Client is used by other ViroLab Virtual Laboratory components
whenever they need to access such a repository.

On the current stage of development, the Application Repository Client offers the
following functionality:

• API for Experiment Planning Environment (the integration with EPE is more
widely discussed in [D2.3]) – including: sharing a new experiment plan,
checkout of an existing experiment plan, releasing a new version of an
experiment plan;

• API for Experiment Management Interface (the integration with EMI is
more widely discussed in [D2.3]) – including: listing released experiment
plans and their versions, downloading an experiment plan for execution,
its license file and descriptor, downloading and uploading the experiment’s
feedback file;

• API for the GridSpace Engine experiment interpreter – downloading the
experiment plan for execution;

• Enables Shibboleth authentication (please consult [D2.3]) – a test
repository is available at https://virolab.gridwisetech.pl/shibsvn/testrepo/;

• Implementation for Experiment Repositories based on Subversion (SVN) –
with use of SVNKit [SVNKIT] libraries.

The future work on the component will include new methods facilitating access to
Experiment Repositories and the Application Repository Client configuration.

ViroLab D3.4 -version 1.0 Page 12 of 44

https://virolab.gridwisetech.pl/shibsvn/testrepo/
https://svn.gforge.hlrs.de/svn/virolab/trunk/experiments/

2.1.4.Grid Operation Invoker (GOI)
Grid Operation Invoker is a module of the GridSpace Engine that provides a
uniform interface to computational resources within an experiment. It
implements the Grid Object abstraction [VLINV] thus facilitates development and
execution of complex experiments accessing functionality provided by various
remote resources. These resources may use Web Service, WSRF (prototype
support), MOCCA, WTS and LCG (EGEE) middleware technologies. The resource
to be used by an experiment is selected by the GrAppO component at runtime,
its description is retrieved from the GRR and it is accessed in its specific protocol.

Since the 0.2 version of the ViroLab virtual laboratory, the GOI has been
enhanced with the following features:

• prototype support for the WSRF middleware,

• prototype support for asynchronous invocations of operations,

• reporting invocations of Grid Operations (for provenance purposes),

• ability to invoke “Shibboleth enabled” Web Services.

The future work on this component will involve creating introspection into Grid
Object representatives, implementation of an adapter for the AHE middleware as
well as enhancing adapters for WSRF and EGEE.

2.1.5.GridSpace Application Optimizer (GrAppO)
The GridSpace Application Optimizer [Malawski07] component is responsible for
choosing a suitable service which will be used to perform Grid Operations by the
Grid Operation Invoker – GOI. To facilitate this choice, GrAppO should use the
Grid Resource Registry, monitoring system and provenance system.

The following features have been added since the 0.2 version of the ViroLab
Virtual Laboratory:

• Passing the GRR location as an argument from GOI – enhanced
configuration

• Prepared integration with monitoring system (see section 3.3)

The future work on the GridSpace Application Optimizer will include performing
further integration with monitoring system and starting integration with the
provenance system.

2.1.6.Grid Resources Registry
Grid Resources Registry is a component where information about accessible
computational resources is stored. Thanks to integration with EPE, Ontology
Browser and GSEngine it hides the complexity of used technology from the user
and allows to focus on functionalities provided by the resources instead of the
way of invoking them (for more information see [D3.2] and [D3.3]).

ViroLab D3.4 -version 1.0 Page 13 of 44

Version 0.2 of the Grid Resources Registry, which was described in [D3.3], has
been improved by adding the following functionalities:

• Grid Resources Registry core:

o Support for new technology: WSRF

o Integration with monitoring and provenance system

o mechanisms that allow to manage information stored in the registry

• Grid Resources Registry EPE plug-ins:

o Admin plug-in (allows to add/edit/remove Grid Objects, Grid Object
Implementations and Grid Object Instances).

o Integration of Admin plug-in with Resources Browser plug-in (for
more information about admin plug-in see tutorial available on
[VIROLAB-VL])

The following enhancements are planned for the last year of the project:

• Resources Registry core:

o Further integration with monitoring and provenance systems

o Better support for MOCCA components (by providing a list of known
H2O kernels where components can be deployed)

• Grid Resources Registry EPE plug-ins:

o Support for ctr+space action in the script editor

o Allow to create Grid Object, Grid Object Implementations and
Instances from WSDL web services description.

2.2.Data Access
Most of the Data Access Service interfaces haven’t change since the previous
release. Nevertheless, some of the existing functionalities have been extended
and/or re-implemented in order to enhance the reliability and scalability
[Assel07] of specific parts and to fix some minor bugs. Additionally, new service
capabilities have been developed and introduced guaranteeing a certain level of
security and trustworthiness [Assel06] for both service users and (data) resource
owners. The access to the service is now created and granted on-demand based
on the current user’s context. This means that each requestor who has been
initially authenticated and successfully authorized is exactly matched with one
unique instance of the service, which is accurately and only reserved for the
respective user. Furthermore, to facilitate the interaction with the services, some
of the annoying features like the separate instantiation of each service resource
have also been passed from the user’s site towards the internal service
responsibilities. Finally, the authorization interfaces have been adapted to
Shibboleth’s authentication and attribute exchange framework (as introduced by
WP2) to allow Single Sign On and attribute-based access control [D2.3] for all
users of ViroLab’s virtual laboratory.

Future developments planned for Data Access shall continually improve the
reliability and scalability of the individual services’ capabilities as well as increase
the data submission performance by processing queries in parallel instead of
submitting requests one after another. The basic user authorization shall be
handled by an external component – a policy decision point [Kipp07] – which has

ViroLab D3.4 -version 1.0 Page 14 of 44

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=improve
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=continually

been already tested but still needs to be integrated with the corresponding
service interfaces. The management of appropriate access control policies shall
be supported through a nice and user-friendly graphical user interface allowing
the fast, easy and dynamic generation, change, and upload of particularly
designed policies in order to provide more flexibility in administering distributed
data resources within a collaborative working environment such as ViroLab.

2.3.Provenance
Since the previous release, most basic PROToS functionality has been in place.
Thus, all changes applied thereafter concentrated on technical details. Firstly, we
have built a number of tools to quickly build and deploy the PROToS components.
Because PROToS architecture is inherently distributed, this was crucial for swift
integration and testing. Secondly, all of system components have been prepared
for one-file distribution. This enabled us to deploy the PROToS on the main
CYFRONET’s ViroLab server where all ViroLab virtual laboratory components are
integrated. Much work has also been dedicated to unit testing of PROToS code.
Our system is fairly complicated (both in terms of code lines and algorithms
implemented), so the achievement of a successful, bug-free processing of data
from Virtual Laboratory monitoring system was a big challenge.

In parallel, the provenance team has also been developing ontologies used for
semantic modeling of experiments, data and specific applications. Since our last
report, we have updated our generic experiment and data ontologies. We have
also created additional application-specific models: for Drug Ranking System and
genotype-to-DRS scenarios, which also use REGA tools. These lie on the base of
integration with application running in our GridSpace Engine.

2.4.Development status summary

ViroLab D3.4 -version 1.0 Page 15 of 44

Laboratory
Database (T4.3)

early stage

Experiment
Repository (T4.3)

stable

Unified
Data

Sources
(wp5)

first data
sources

integrated

Presentation (T 2.3)
Experiment Planning Environment – middle stage

QUaTRO provenance portlet – middle stage
Experiment Management Interface 0.1 – mature stage
Experiment Management Interface 0.2 – early stage

ViroLab Portal – mature stage
ViroLab Decision Support portlet – early stage

Collaboration user interface – middle stage

GridSpace Engine (T 3.1)
Local execution – mature stage
Remote execution – middle sage

Computation Server – middle stage
Experiment Repository client

- mature stage
Operations invocation (GOI)

- middle stage
Execution optimization (GrAppO)

- early stage
Data access (DAC) – middle stage

Data Access (T 3.3)
Rule set access – mature stage

Encryption – middle stage
Authorization – middle stage
Authentication – middle stage

DA Server – mature stage
Multi-query support – middle stage
Data sources schema translation

– middle stage
Sources monitoring – early stage

Data sources integration
– three sources integrated

Grid Objects:
Drug Ranking

Alignment
Subtyping
Protein DB

Data mining

Middleware (T 2.2)
Technology adapters

- middle stage
2 Middleware platforms

- stable
3 other platforms

- middle stage

Domain Ontology Store (T 3.1)
Model store – stable

Models – middle stage

Collaboration
 (T 3.2)

Access to DRS
- middle stage
Access to DAS
- early stage

Grid Resources
Registry (T 3.1)

mature stage

PROToS (T 3.4)
(provenance tracking system)

Core component – mature stage
Event generation – middle stage

Semantic event aggregation
- middle stage

Query translation (QuaTRO)
- mature stage

M-Ring (T 2.2)
(monitoring infrastructure)

middle stage

Figure -3: Current status of the development

Figure -3 shows an overview of the current state of development of individual
packages and the level of integration with their neighboring modules (please
compare it with a similar figure in [D3.3]). The development team already
reached the phase when the development of all and each of the components of
the Virtual Laboratory is started and ongoing. This is the result of the significant
shift of the work effort towards the implementation in the second year of the
Project. The core components that were started considerably early (with first,
technical-preview releases in April 2007) have reached more stable state
recently, while a set of newly started components is still in an early, quite
unstable phase. Also, some parts of the user interface deployed in Portal are
being re-implemented now (due to a decision to drop the previous technological
solution) so there are two versions mentioned (this however has no impact on
the users of the Virtual Laboratory since the older, more stable version is still
supported by the development team). The arrows in Figure -3 show which
communication channels are already implemented and used in the latest releases
of the ViroLab software.

Since the release of the first prototype the implementation team employed the
incremental, open-source based process of development. Each new release is
made available for a download for the community (along with its updated
documentation) and there is a reporting mechanism where users may report
problems or request for new features. The requests are then aligned with the
future release plans so the users may see how quickly some issue will be solved.
This process is backed by the Virtual Laboratory project website: [VIROLAB-VL].

ViroLab D3.4 -version 1.0 Page 16 of 44

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

Projected delivery of Virolab-0.1

Projected delivery of Virolab-0.2
and first project yearly review

Projected delivery of Virolab-0.5

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

Projected delivery of Virolab-0.1

Projected delivery of Virolab-0.2
and first project yearly review

Projected delivery of Virolab-0.5

Figure -4: Virtual laboratory implementation timeline (from D3.2).

Figure -4 recalls the development timeline presented in [D3.2] and maintained
since then. The implementation process is now approaching the “Virolab-0.5”
milestone that constitutes a moment in time when all the crucial components of
the Virtual Laboratory are finally integrated and start to operate together. The
detailed sections that follow explain in much more detail how this works in the
latest ViroLab software releases.

ViroLab D3.4 -version 1.0 Page 17 of 44

3.Integration of Runtime System with
Middleware and Presentation Layer

3.1.Integration with Experiment Planning
Environment

As reported in Section 2.1 GSEngine provides Command Line Tools such as ‘gsel’
and ‘gsec’ that enables running applications locally or remotely, respectively.
These two are accepting several command line arguments such as application
URI, main script file name and input arguments, and in the case of gsec addition-
al two arguments, namely, server address and port number of GSEngine Server.
These tools may be run both from console and from language-specific libraries
for launching external native processes of operational system (OS) e.g. through
Java’s ‘java.lang’ package. Having launched external process application can
handle input, output and error streams of such a process.

Figure -5: Procedure of registering GScript interpreter in the EPE
From the user point of view, the only thing to be done (besides installing the
GSEngine correctly) is providing in the EPE information about GSEngine executa-
bles location (Figure -5). After this, the developer can execute experiment with
the “Run as experiment” operation (for more details see the 4.1.2 section in
[D2.3]).

3.2.Integration with Experiment Management
Interface

As reported in Section 2.1.1 GSEngine provides Java libraries containing
GSEngine API and its two implementations that enable evaluation of application
both within embedded (in the same Java Virtual Machine) engine or within
remotely staged GSEngine Server accessed through GSEngine Protocol.

EMI includes these libraries and directly calls a local facade of either a remote or
local implementation of the actual GSEngine server. The deployment is divided
into three layers which are a client's web browser, web application server and a
remote engine server. Figure -6 presents the integration points between those
layers (marked with horizontal red lines).

ViroLab D3.4 -version 1.0 Page 18 of 44

Figure -6: Integration points between EMI and Grid Space Engine

Both integration points are implemented asynchronously. The one between
client's web browser and web application server using an RPC mechanism of the
google web toolkit [GWT] and the second one using a TCP implementation called
Grid Space Engine Protocol (GSEP). GSEP provides a client used in the web
application server to implement the communication with the server (marked in
brown in Figure -6). On the Experiment Management Interface side (EMI) which
is marked with yellow an implementation of the EvaluationCallback interface is
provided (ApplicationCallback) in order for the GSEngine server to
asynchronously notify the web application server about the status of application
evaluation. In addition EMI uses RemoteInterpreter and EvaluationRequest
classes to request evaluations of specific applications according to the user
actions. For each evaluation new instances of those classes are created and
separate logical communication channels with GSEngine server are established.
This ensures independent application handling by EMI. The main synchronization
point is implemented by the ExecutionServiceImpl which is thread-safe. From the
side of the browser client a standard servlet implementation is used. The base
servlet implementation is provided by the GWT package which is extended by the
execution service implementation providing the implementation of the business
login methods like executeApplication() or checkExecutionStatus(). The
IExecutionService interface exposes those methods on the client side. The
marshaling and unmarshaling of the parameters between Java and JavaScript
implementations is handled by the GWT toolkit.

ViroLab D3.4 -version 1.0 Page 19 of 44

Figure -7: Generic interaction diagram

In Figure -7 a generic example of the interaction between a client and a
GSEngine server with EMI as an intermediary is presented. This allows a user to
execute experiment plans with introspection at the status of the execution. There
are three states in which the evaluation may be reported back to the user. These
are running, data required and finished states. The described communication
model also implements the use case of submitting user data to the GSEngine
server when required by the experiment. The diagram in Figure -7 shows that
the client is always notified about the changes in the evaluation of the application
requested in step 1. To keep accordance with Figure -6 also three deployment
layers are depicted. For each evaluation a new ApplicationCallback is created in
step 3, followed by an asynchronous evaluate() call to the GSEngine server
instance. In steps 7 and 16 the server requests data from the user and notifies
about the evaluation finish accordingly. The state in the execution service
implementation is updated in steps 8 and 17, which is done independently of the
checkStatus() method repeatedly invoked by the browser client. After the new
status is passed to the browser, proper views are updated and the client receives
new information. It is important to stress that simultaneous execution of
applications is supported. Data requests are limited to one single-lined text

ViroLab D3.4 -version 1.0 Page 20 of 44

strings for each request. During one evaluation several data requests may be
performed.

The future integration should extend the data request mechanism to
support more complex data definitions. Another improvement will be a complete
reimplementation of the way results are presented. This modification will have to
include changes in the API delivered to application developers to select result
data. A new storage facility with metadata support will be provided to effectively
annotate the results. In addition, dedicated viewers on the client browser will be
provided to customize the way different data formats of the results are
presented.

3.3.Integration with Monitoring Infrastructure
through Events Propagation

One of the Grid Resources Registry functions is storing the endpoint addresses to
every service which is able to be used in the system. The monitoring provides
information whether this service is available for use. Integration of this system is
based on the Java Message Service (JMS) with two channels (see Figure -8).

Figure -8: Communication between Grid Resources Registry and monitoring system.

The first channel is used by GRR to send events with the endpoint of service to
be monitored or events that resource should be stopped being monitored. The
second channel is used by monitoring to send the status of the monitoring
service to the GRR. The events with information about the availability of service
are created periodically with preconfigured time gap. The status of the service
passed in these events can be: ALIVE, DEAD or NOT_CHECKED. Thanks to this
information GrAppO receives only the information about resources that are
accessible and operable.

Integration between GRR and monitoring infrastructure is fully configurable
thanks to the registry architecture. As was described in [D3.3] Grid Resources
Registry is created using IoC [IOC] design pattern implemented by Spring
framework [SPRING] that allows to configure outside the application code what
should be invoked at the startup or shutdown of the application. Additionally
thanks to support for aspect oriented programming, without hard coding we can
configure the method execution chain. The integration between GRR and
monitoring system looks as follow (see Figure -9):

 When application starts it registers in the monitoring system all resources
instances that should be monitored. If during the runtime new resource is
registered, proper event is generated and added to the list of the
resources that are monitored.

ViroLab D3.4 -version 1.0 Page 21 of 44

 Events are generated to the monitoring system to stop monitor concrete
resources before registry shutdown. Similar to the previous point if
resource is removed from the registry during the runtime, an event is
generated to the monitoring system and resource is removed from the list
of monitored resources.

 During the runtime monitoring system sends periodically information
about resources' status to the registry which updates their status.

Figure -9: Exchange of events between Grid Resources Registry and monitoring system

In addition to the information about service status (see the previous
paragraphs), the monitoring system will pass data concerning capabilities of the
resource (node) on which the service is hosted to Grid Resources Registry. This
information is node’s RAM and CPU, later consumed by GridSpace Application
Optimizer (GrAppO). Such data can be stored in the registry since they are
relatively static and do not change unless the service status is altered (what is
reported to GRR by the monitoring service).

GrAppO needs also information about current (at runtime) resource utilization.
This include RAM and CPU usage, which are obtained directly from the
monitoring system. The data flow between GridSpace Application Optimizer and
Grid Resources Registry and monitoring system is illustrated by Figure -10.

ViroLab D3.4 -version 1.0 Page 22 of 44

Figure -10: Data exchanged between GrAppO and its peers (GRR, monitoring) about
resources condition

GrAppO connects to GRR through a web service interface provided by the
registry. The messages are sent using SOAP (see Figure -11).

The integration with monitoring system will be realized, as in case of GRR, using
Java Message Service (JMS) with two channels (see Figure -11). The first channel
is responsible for carrying the GrAppO’s request and the second one carries the
response of monitoring system.

Figure -11: Communication protocols between GrAppO and its sources of information

Current status of the integration enables monitoring of the resources availability
and operability. In the future, further integration between Grid Resources
Registry, GridSpace Application Optimizer and the monitoring system is planned.
When the additional information is gathered by the monitoring system it will be
passed to GRR and, further, to GrAppO.

ViroLab D3.4 -version 1.0 Page 23 of 44

4.Integration of Collaboration Tools with
Portal, DAS and DRS

The Patient Treatment Support (PTS) tool, initially implemented based on
standard mutation list alignment functionality, allows users to define and fine-
tune their real collaboration needs, such as exchange of aligned sequence data
with their colleagues, seamless access to distributed hospital data, access to
consolidated sequence ranking services, and exchange of ranking results and
conclusions with other scientists. The integration of the core tool functionalities
within the ViroLab Virtual Laboratory are focused on the porting of the medical
user interface into the ViroLab Application portal, and its enhancement with
collaboration capabilities.

For access to the distributed data providers for communication of data and
results via integration with the Virtual Laboratory, the main part of the
integration with the postal relies on a few back end services provided by the
Virtual Laboratory:

• The Data Access Service backend, which provides libraries for on-the-fly
connection to data providers.

• The Grid Object Interface, which provides access to the distributed
Decision Support Ranking System.

For instance, we integrate the tool into the Data Access Service backend using
the service’s org_hlrs_das_stubs.jar and org_hlrs_das.jar. Collaboration within
the Virtual Laboratory is provided as a service providing an interface to the
GridSphere portal.

ViroLab hospital data repositories provide an interface via the Data Access
Service (DAS), using on-the-fly service instances. An interactive Grid service
provides connectivity to the meta Decision Support Ranking Service (DRS) which
connects to a number of HIV drug-resistance ranking algorithms within specific
regions of the genome. The ranking results can be saved and exchanged with
colleagues for further discussion and experimentation.

In a typical use case, the tool provides medical users a friendly interface where:

1. A medical user, e.g., a virologist, logs into the ViroLab application portal
in order to query drug resistance rankings
(https://virolab.gridwisetech.pl/gridsphere/gridsphere), using her Grid
credentials or Shibboleth proxy.

2. The user clicks on the Patient Treatment Support tab, where she may:

o Select data repositories (e.g., ViroLab hospital/institute partners)
where input data for new queries can be found.

o Select one or more HIV algorithms to use (e.g., RetroGram
REGA, Stanford, ANRS).

o Select the regions of the Genome of interest (e.g., Protease,
Reverse Transcriptase, Envelope).

o Enter/paste a mutation or sequence to query, or upload/paste one
or various FASTA files.

o Submit the query to the distributed ranking system.

3. Once the ranking has been performed and the results are shown, the user
may:

ViroLab D3.4 -version 1.0 Page 24 of 44

o Save the resulting rankings locally and/or e-mail the results,
together with comments and conclusions, to other colleagues.

o Access other colleagues’ results and comments for comparison and
new experiment runs.

We expect next to work on improving the implementation of the tool’s user
interface (e.g., the support for multiple FASTA files, automatic alignment of
sequences, improving of the results’ interface for presentation and sharing), and
continue full integration activities within the ViroLab-specific GridSphere portal
framework, Data Access and Provenance services.

ViroLab D3.4 -version 1.0 Page 25 of 44

5.Data Access Service

5.1.Integration with ViroLab Portal
Querying data from widely dispersed resources constitutes a challenging and
difficult task. The connection to all available resources needs to be highly secured
and, at the same time, the different underlying technologies need to be carefully
integrated. However, apart from the technological circumstances, the complex
task of designing and implementing a nice and user-friendly front-end requires
the same effort and time rather than building the transparent infrastructure.

To overcome this challenge, a specifically styled data access GUI (DASPortlet,
Figure -12) is being developed and foreseen to be integrated with the ViroLab
Portal. A first screenshot of this application is shown in the following figure.

Figure -12: Screenshot of the DASPortlet

This preliminary version of the portlet currently running at HLRS’s portal instance
connects with the DAS in a very common way by simply making use of the well-
known web service principles – the services’ capabilities are accessible via so-
called web service proxies that hide all communication and transformation
operations from the users. The interactions between the application and the
interfaces are based on SOAP over HTTP or additionally, via HTTPS to increase
the message flow security.

All basic functionalities are directly executable from the portlet. That includes the
simple viewing of available and/or accessible resources, the individual browsing
of certain databases but also the submission of distributed queries to respective
resources. Particular security features are described in more detail within
deliverable [D2.3].

ViroLab D3.4 -version 1.0 Page 26 of 44

To explain the extensive interplay of the major DAS subsystems (data and
security) together with the developed user interface, we briefly demonstrate a
common use case, how one can submit a distributed query to all available data
resources concurrently and, explain which actions are carried out during the
user’s request.

Typically, doctors want to use the virtual environment for requesting patient
information including genetic data such as nucleotide sequences or mutations, in
order to predict any possible drug resistance for their according case. They
simply want to retrieve all relevant information without the need of any specific
expertise in computer science. Therefore, the way to get to the data must be
kept simple and transparent to them but should be as self-explaining as possible.

Figure -13 clearly depicts the aforementioned scenario separated into the four
major infrastructure layers of the virtual laboratory. In the following, the
individual steps shall be roughly mentioned.

Figure -13: Common ViroLab data request

Steps:

• User (doctor) logs into the Portal. He/she needs to provide his/her
credentials (typically username and password).

• The credentials are now transferred to the local identity management
system located the corresponding user site (HO). They are verified against
the local user credentials stored in the hospital’s database.

• In case the user is known to the local system, a digital identity token
(fingerprint) is created and sent back to the server that is hosting the
portal. If the user’s identity is unknown, the portal displays an error
message and the process is immediately stopped.

ViroLab D3.4 -version 1.0 Page 27 of 44

• Once the user is logged in, he/she can choose between different available
applications.

• In our case, the user wants to query some data from the integrated data
resources. He selects the DASPortlet and sends a request to the DAS.

• During that request, the initially created identity token is also passed to
the DAS that takes the token to request the corresponding user attributes
like the user’s role, organization, department, e-mail address etc.

• This attribute request is performed by sending the identity token to the
user’s home organization (HO) firstly proving whether the user is known
and the token is valid. In a second step, the released attributes are
obtained from the local database and returned to the DAS.

• The DAS takes all these attributes to authorize a user for certain
resources. The final decision whether someone is allowed to access a
resource is only known to the PDP (Policy Decision Point). Therefore, DAS
sends an authorization request to the PDP. This request contains the
afore-requested attributes and a list of available resources.

• The PDP checks its stored access control policies for corresponding rules.
These rules contain conditions specifying the required set of attributes. If a
policy rule matches with the provided attributes, the appropriate resource
is cached. Having evaluated each access policy, the PDP return a list of
accessible resources to the DAS.

• Finally, the DAS takes the incoming query and tries to connect to each of
the accessible resources and performs the request.

To present a more technical view on the abovementioned workflow, Figure -14
displays the same scenario in form of a typical use case diagram showing all
relevant message and data flows during the submission of a distributed query. In
particularly, the involved DAS components are highlighted here.

ViroLab D3.4 -version 1.0 Page 28 of 44

Figure -14: Process flow of a distributed data query

5.2.Integration with Experiment Planning
Environment

The Data Access Services are an integral part of the ViroLab Virtual Laboratory,
but it cannot be directly interfaced by the ViroLab user layer. Hence, a separate
module of the ViroLab runtime system, called the Data Access Client (DAC), has
been implemented. The DAC has several important functions basically carrying
out all communications with the Data Access Services including user
authorization, submission of queries, and finally importing results into the
context of the ViroLab experiment scripts. All these capabilities are provided in
conjunction with the services’ interfaces, which can be easily invoked and
accessed via so-called web service stubs. The major service functionalities have
been integrated with DAC and can be directly used within EPE although some
specific WSRF properties have not been considered so far. Regarding secure
interactions, all communications between DAC and the services are protected
through an encrypted message transfer. Authentication takes place at the user
site – experiments can only be executed after a user has been successfully
identified by the infrastructure – while authorization is performed by the services
[D2.3]. DAC simply forwards the current user identity token once it connects
with DAS for the first time. As long as the token is valid, the user can run the
experiment(s) again and again.

5.3.Outlook on future work
Apart from the current integration status, there are still some open issues, which
should be covered within the rest of the project’s timeline.

Firstly, all data providing project partners shall be connected to the ViroLab
virtual laboratory by integrating their data sources via the data access

ViroLab D3.4 -version 1.0 Page 29 of 44

infrastructure. Therefore, their databases need to be initially migrated into the
RegaDB schema – the common ViroLab data description language decided by all
projects members – to guarantee the complete standardization for all available
data resources and to ease the formulation of corresponding data requests.
Plans for integrating databases from other European projects, e.g. EUresist are
also ongoing.

Another task envisages the connection to the Provenance system in order to
build a highly scalable data tracking system, and to ensure that data sets are not
stored at multiple locations but kept consistent within the overall environment.
To support end-users, mainly doctors with more user-friendly applications that
can be used during their daily hospital tasks, a specific portlet enabling the easy
execution of on-demand drug resistance interpretations based on up-to-date
patient information and the latest available rule sets, is planned to be developed
within the scope of the ViroLab project. Therefore, different individual work
packages need to cooperate together and integrate their developed services and
tools into a real end-user application.

ViroLab D3.4 -version 1.0 Page 30 of 44

6.Provenance Tracking System (PROToS)

6.1.Integration with Monitoring Infrastructure
The provenance lifecycle in ViroLab can be divided into the following phases:
(1) experiment monitoring, (2) event aggregation, (3) storage of provenance
records, (4) provenance querying. The event aggregation phase is where events
captured in the course of experiment execution are translated into an ontology
representation and published in PROToS [Balis07]. The Semantic Event
Aggregator component is responsible for the integration of the monitoring
infrastructure and PROToS. The event gathering interface of PROToS is accessed
directly by the Aggregator, responsible for the building of coherent, complete and
valuable information. The monitoring events collected from various sources
undergo correlation, aggregation and augmentation in order to create the
ontology individuals translated directly to the PROToS-specific events. Basically,
two types of events are collected:

• generic events – describe the execution of experiments in general;
represented in XML based on the corresponding XSD schemas;

• domain events – describe the semantics of operations and data used in
experiments; these events are concrete ontology individuals (RDF/OWL
representation) augmented with ACID (Application Correlation Identifier) to
correlate domain events with generic experiment events.

The event aggregation process is defined by aggregation rules specified in an
ontology extension. Every aggregation rule describes:

• what event types should be aggregated,

• how events ACID should correspond with each other,

• what ontological classes should be instantiated when aggregation rule is
satisfied.

When a new ontology individual is created, its identifier, functional and
ontological properties are established, based on their derivations defined in the
ontology extension. Two types of derivation are supported:

• XML derivation – indicates a concrete XML piece of data, which can be
mapped directly to a datatype property.

• Delegate derivation – indicates a concrete Java class exposing methods
utilized to constitute a datatype or object property, what involves e.g.
mathematical operations applied to collected XML data, casting between XSD
types or data base querying.

Created individuals are associated with unique IDs obtained as a result of
applying a hashing function to the individual’s properties or ACID number. In this
way, upon creation a new individual, we can discover an already existing
individual which must be associated with the one being created.

Unlike the generic events, the ontological events are mapped directly to the
individuals, therefore they contain ontological property values defined explicitly.
Optionally, in the case when collected information is incomplete, some additional
properties can be established in Aggregator.

At the current stage of development, two ontologies are built by Aggregator –
experiment ontology which is built from the generic events produced by
GSEngine and GRR components, and a domain DRS ontology, built from the

ViroLab D3.4 -version 1.0 Page 31 of 44

ontological events. A simplified structure of those ontologies is depicted in Figure
-15.

VirolabEvent

1

*

1*

generatedEvent

Concepts from
Upper ontology

Concepts from
experiment

ontology

Concepts from DRS
domain ontology

DRSEvent
-subtypedNs
NucleotideSequenceSubtyping

subClassOf

subClassOf

-patientName
-dateOfBloodSample
-testedNucleotideSequence
-executorName

NewDrugRanking

subClassOfsubClassOf

-id
-name
-ownerLogin
-sourceFile
-version
-time
-duration

Experiment

ExperimentStage

-time
-duration
-operationName

GridOperationInvocation

-endpoint
-technology

GridObjectInstance

* *

utilizedInstance

-alignedNs
-alignmentRegion

NucleotideSequenceAlignment

-name
-statelessness
-meaning

GridObject

**

hasStage

subClassOf class

Figure -15: PROToS ontology model

The ontologies are semantically connected by a generatedEvent property, which
is not known at the moment of creation of the corresponding domain and generic
events. Therefore, all generic events must be temporarily stored in a buffer
managed by Aggregator. When a new domain event occurs, it is associated with
a buffered generic event that occurred nearly in time and which has
a corresponding ACID number.

ViroLab D3.4 -version 1.0 Page 32 of 44

6.2.Integration with QUaTRO in Presentation
Layer

As described [D2.3], QUaTRO is a tool that, by means of AJAX GUI, enables
easy, end-user oriented querying to repositories of provenance and experiment
data in the ViroLab Virtual Laboratory [Balis07-2].

Figure -16: QUaTRO component integration

Currently, QUaTRO is fully integrated with the PROToS system, which serves as
provenance repository, and with SQL-based experiment data sources, including
CYFRONET’s test data base (Figure -16). The integration of QUaTRO with PROToS
is done by standard PROToS component – Data Retrieval Engine. This consists of
data model for preparing queries and external interface, exposed and accessed
by stateless Web Services.

ViroLab D3.4 -version 1.0 Page 33 of 44

Figure -17: PROToS DRE interface and data model

In detail, as presented in Figure -17 a provenance query is submitted by calling
the executeQuery method from IDataRetrieval interface. This should be preceded
with preparation of instance of the Query class, containing provenance-mining
XQuery. Thanks to using industry-standard communication technologies based
on Web Services and a well-known, previously defined, Java interface, the
integration of QUaTRO and PROToS was achieved without problems. In fact, we
have been able to move from using mock objects to real PROToS interfaces in
few hours.

ViroLab D3.4 -version 1.0 Page 34 of 44

Figure -18: Query construction process

Let as examine the interaction of QUaTRO and PROToS by analyzing the
evaluation of the following query: “Select all drug rankings that were performed
with some rule sets”. Figure -18 shows how QUaTRO interacts with external
components, especially the provenance repository (PROToS) in the course of
user-defined query evaluation. The process starts when the user has defined
a query using QUaTRO GUI. This query is represented in internal data format,
which is essentially a tree whose leaves are evaluated as queries to PROToS or
experiment databases. Some properties are mapped to underlying data sources
and models. These are fetched from the specified data sources (currently
CYFRONET’s relational database). The query tree is then translated into XQuery
language which is used by PROToS. Finally, the query is packed into a Query-
class instance and sent to the PROToS DRE component through a Web Service-
based interface. Query result is returned as XML and presented to the user in
GUI.

Future work will concentrate on the integration with all data sources available in
ViroLab, especially with those provided by the Data Access Service. This
integration will be done by using the GSEngine’s standard Data Access Client. We
anticipate using a remote instance of GSEngine, running on a ViroLab server, to
access the data sources. We are also planning to refactor QUaTRO code to
provide a common, extensible repository access layer. This is essential to
achieve a semantic integration with other repositories, which is part of our long-
term plans.

ViroLab D3.4 -version 1.0 Page 35 of 44

7.List of Publications

The list below contains publications authored by persons involved in the
development of the Virtual Laboratory. The list of delivered MSc theses is also
provided.

• M. Assel, B. Krammer, A. Loehden. Data Access and Virtualization within
ViroLab. In Proceedings of the 7th Cracow Grid Workshop 2007, pp. 77-
84, Cracow, Poland, October 2007.

• M. Assel, B. Krammer, A. Loehden. Management and Access of Biomedical
Data in a Grid Environment. In Proceedings of the 6th Cracow Grid Work-
shop 2006, pp. 263-270, Cracow, Poland, October 2006.

• M. Assel, A. Kipp. A Secure Infrastructure for Dynamic Collaborative
Working Environments. In Proceedings of the 2007 International
Conference on Grid Computing and Applications (GCA'07/ISBN #:1-60132-
032-9/CSREA), Editor: Hamid R. Arabnia, pp. 212-216, Las Vegas, USA,
June 2007.

• B. Balis, M. Bubak, and M. Pelczar. From Monitoring Data to Experiment
Information -- Monitoring of Grid Scientific Workflows. In G. Fox, K. Chiu,
and R. Buyya, editors, Third IEEE International Conference on e-Science
and Grid Computing, e-Science 2007, Bangalore, India, 10-13 December
2007, pages 187-194. IEEE Computer Society, 2007.

• B. Balis, M. Bubak, and J. Wach. User-Oriented Querying over Repositories
of Data and Provenance. In G. Fox, K. Chiu, and R. Buyya, editors, Third
IEEE International Conference on e-Science and Grid Computing, e-
Science 2007, Bangalore, India, 10-13 December 2007, pages 77-84. IEEE
Computer Society, 2007.

• T. Bartyński, M. Malawski, T. Gubała, M. Bubak: Universal Grid Client: Grid
Operation Invoker; 7-th International Conference on Parallel Processing
and Applied Mathematics PPAM'2007, (LNCS 4967 to appear)

• T. Bartyński, M. Malawski, M. Bubak: Invocation of Grid Operations in the
ViroLab Virtual Laboratory; in Cracow Grid Workshop 2007 Workshop
Proceedings, pp.59-64, ACC CYFRONET AGH 2008

• E. Ciepiela, J. Kocot, T. Gubala, M. Malawski, M. Kasztelnik, M. Bubak:
Virtual Laboratory Engine - GridSpace Engine; in Cracow Grid Workshop
2007 Workshop Proceedings, pp.53-58, ACC CYFRONET AGH 2008

• M. Bubak, T. Gubala, M. Kasztelnik, M. Malawski, P. Nowakowski, P.M.A.
Sloot: Collaborative Virtual Laboratory for e-Health; in P. Cunningham and
M. Cunningham, editors, Expanding the Knowledge Economy: Issues,
Applications, Case Studies, eChallenges e-2007 Conference Proceedings,
pp. 537-544. IOS Press, 2007.

• T. Gubała, B. Baliś, M. Malawski, M. Kasztelnik, P. Nowakowski, M. Assel,
D. Harężlak, T. Bartyński, J. Kocot, E. Ciepiela, D. Król, J. Wach, M.
Pelczar, W. Funika, M. Bubak: ViroLab Virtual Laboratory in Cracow Grid
Workshop 2007 Workshop Proceedings, pp. 35-40, ACC CYFRONET AGH
2008

• M. Kasztelnik, T. Gubała, M. Malawski, M. Bubak: Development and
Execution of Collaborative Application on the ViroLab Virtual Laboratory; in

ViroLab D3.4 -version 1.0 Page 36 of 44

http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw

Cracow Grid Workshop 2007 Workshop Proceedings, pp.41-46, ACC
CYFRONET AGH 2008

• M. Malawski, J. Kocot, E. Ciepiela, M. Bubak: Optimization of Application
Execution in the ViroLab Virtual Laboratory; in Cracow Grid Workshop
2007 Workshop Proceedings, pp.65-70, ACC CYFRONET AGH 2008

Finished Master of Science theses related to the research in the frame of ViroLab:

• Joanna Kocot, Iwona Ryszka: Optimization of Grid Application Execution;
Master of Science Thesis supervised by Marian Bubak; AGH University of
Science and Technology, June 2007, Krakow, Poland

• Eryk Ciepiela: Monitoring of Component-Based Applications; Master of
Science Thesis supervised by Marian Bubak; AGH University of Science
and Technology, June 2007, Krakow, Poland

• Tomasz Bartyński: Remote execution of delegated operations with support
for automatic selection among multiple communication protocols; Master
of Science Thesis supervised by Marian Bubak; AGH University of Science
and Technology, February 2008, Krakow, Poland

ViroLab D3.4 -version 1.0 Page 37 of 44

http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/TBthesis_public.pdf?format=raw
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/TBthesis_public.pdf?format=raw

8.Summary
This document presents the core components of the ViroLab WP3 and the status
of their integration after 24 months of the project. For each component, a list of
implemented features was presented. If the implementation of a component
strayed from the design description outlined in [D3.2], the appropriate rationale
was also provided. This document is expected to serve as a report on the status
of the ViroLab Virtual Laboratory and also to present guidelines and plans for the
remaining period of ViroLab development.

As described in the design deliverable, we follow a phased approach, progressing
from simple functionality to more advanced elements of the architecture as time
passes. We expect to be able to report on the final version of the Virtual
Laboratory system and its validation in the next scheduled WP3 deliverable,

which is due to be released in Month 36 of the Project.

ViroLab D3.4 -version 1.0 Page 38 of 44

Abbreviations

Abbreviation/Term Explanation
AAS Aminoacid Sequence

ACID Application Correlation Identifier

API Application Programmer’s Interface

ARID Application Run Identifier

CCA Common Component Architecture

DAC Data Access Client

DAS Data Access Services

DB Database

DEISA Distributed European Infrastructure for Supercomputing

DGE Data Gathering Engine

DOS Domain Ontology Store

DRAM Drug Resistance Associated Mutations

DRE Data Retrieval Engine

DRS Drug Ranking System

DS Distributed Storage

DSS Decision Support System

EGEE Enabling Grids for e-Science in Europe

EMI Experiment Management Interface

EPE Experiment Planning Environment

EPL Experiment Planning Language

FLOWR For-Let-Where-Order by-Return

Gob Grid Object Class

GObI Grid Object Instance

GObID Grid Object Identifier

GObImpl Grid Object Implementation

GOp Grid Operation

GOI Grid Operation Invoker

GrAppO Grid Application Optimizer

GRR Grid Resources Registry

GSEngine GridSpace Engine

GT Globus Toolkit

GUI Graphical User Interface

HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ViroLab D3.4 -version 1.0 Page 39 of 44

Abbreviation/Term Explanation
IEEE Institute of Electrical and Electronic Engineers

IoC Inversion of Control

JMX Java Management Extensions

JSR Java Specification Request

JVMTI Java Virtual Machine Tool Interface

LCG LHC Computing Grid

LHC Large Hadron Collider

LOB Large Object

MLA Mutation List Analysis

MQL Meta Query Language

MVC Model-View-Controller

M-Ring ViroLab Virtual Laboratory Monitoring Infrastructure

NS Nucleotide Sequence

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture – Data Access
Integration

OGSA-DQP Open Grid Services Architecture – Distributed Query
Processing

OO Object-Oriented

OR Object-Relational

OWL Web Ontology Language

QUaTRO Query Translation Tools

PDP Policy Decision Point

PROToS Provenance Tracking System

RAD Rapid Application Development

RBAC Role-Based Access Content

RDF Resource Description Framework

RDQL Resource Description Framework Data Query Language

RMI Remote Method Invocation

RPC Remote Procedure Call

SCM Source Code Management

SN Storage Node

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SSN Storage Super Node

SSO Single Sign-On

SVN Subversion

ViroLab D3.4 -version 1.0 Page 40 of 44

Abbreviation/Term Explanation
TLS Transport Level Security

UI User Interface

UML Unified Modeling Language

URI United Resource Identifier

URL Unified Resource Locator

UTF8 8-bit Unicode Transformation Format

VL Virtual Laboratory

VM Virtual Machine

VO Virtual Organization

VPN Virtual Private Network

WP Workpackage

WS Web Service

WS-I Web Services Integration

WSDL Web Services Definition Language

WSRF Web Services Resource Framework

XML Extensible Markup Language

XSL Extensible Stylesheet Language

ViroLab D3.4 -version 1.0 Page 41 of 44

References

[Assel06] M. Assel, B. Krammer, and A. Loehden. Management
and Access of Biomedical Data in a Grid Environment.
In Proceedings of the 6th Cracow Grid Workshop 2006,
pp. 263-270, Cracow, Poland, October 2006.

[Assel07] M. Assel, B. Krammer, and A. Loehden. Data Access
and Virtualization within ViroLab. In Proceedings of the
7th Cracow Grid Workshop 2007, pp. 77-84, Cracow,
Poland, October 2007.

[Balis07] B. Balis, M. Bubak, and M. Pelczar. From
Monitoring Data to Experiment Information --
Monitoring of Grid Scientific Workflows. In G. Fox,
K. Chiu, and R. Buyya, editors, Third IEEE International
Conference on e-Science and Grid Computing, e-
Science 2007, Bangalore, India, 10-13 December 2007,
pages 187-194. IEEE Computer Society, 2007.

[Balis07-2] B. Balis, M. Bubak, and J. Wach. User-Oriented
Querying over Repositories of Data and Provenance. In
G. Fox, K. Chiu, and R. Buyya, editors, Third IEEE
International Conference on e-Science and Grid
Computing, e-Science 2007, Bangalore, India, 10-13
December 2007, pages 77-84. IEEE Computer Society,
2007.

[Bartynski07] T. Bartyński, M. Malawski, T. Gubała and M. Bubak:
Universal Grid Client: Grid Operation Invoker; 7-th
International Conference on Parallel Processing and
Applied Mathematics PPAM'2007, (LNCS 4967 to
appear)

[Bubak07] M. Bubak, T. Gubala, M. Kasztelnik, M. Malawski, P.
Nowakowski, P.M.A. Sloot: Collaborative Virtual
Laboratory for e-Health; in P. Cunningham and M.
Cunningham, editors, Expanding the Knowledge
Economy: Issues, Applications, Case Studies,
eChallenges e-2007 Conference Proceedings, pp. 537-
544. IOS Press, Amsterdam, 2007.

[Ciepiela07] E. Ciepiela, J. Kocot, T. Gubala, M. Malawski, M.
Kasztelnik, M. Bubak: Virtual Laboratory Engine -
GridSpace Engine; in Cracow Grid Workshop 2007
Workshop Proceedings, pp.53-58, ACC CYFRONET AGH
2008

[D2.1] ViroLab Project. D2.1 – State of the art Survey, Design
and Workpackage Specification. ViroLab Project
Consortium, 2006

[D2.2] ViroLab Project. D2.2 – Architecture for Presentation
Layer. VO Pilot Deployment with Basic Middleware for
Data Access, Resource Management and Information.
ViroLab Project Consortium, 2007

ViroLab D3.4 -version 1.0 Page 42 of 44

[D2.3] ViroLab Project. D2.3 – ViroLab VO version 1
deployment, integration with WP3, WP4 and WP5 –
report and demonstration. ViroLab Project Consortium,
2008

[D3.1] ViroLab Project. D3.1 - State of the art Survey, Design
and Workpackage Specification. ViroLab Project
Consortium, 2006

[D3.2] ViroLab Project. D3.2 – Design of the Virtual
Laboratory. ViroLab Project Consortium, 2007

[D3.3] ViroLab Project. D3.3 – Session Manager, runtime
system and data layer: installation, integration and
usage; description of interfaces to WP2, WP4 and WP5
- report and demonstration. ViroLab Project
Consortium, 2007

[D3.3USR] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: Experiment Developer Tools Manual, August 2007

[D3.3DEV] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: Experiment User Tools Manual, August 2007

[D3.3VLDEV] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: ViroLab Runtime Components Documentation,
August 2007

[Gubala07] T. Gubała, B. Baliś, M. Malawski, M. Kasztelnik, P.
Nowakowski, M. Assel, D. Harężlak, T. Bartyński, J.
Kocot, E. Ciepiela, D. Król, J. Wach, M. Pelczar, W.
Funika, M. Bubak: ViroLab Virtual Laboratory in Cracow
Grid Workshop 2007 Workshop Proceedings, pp. 35-40,
ACC CYFRONET AGH 2008

[GWT] Google Web Toolkit, http://code.google.com/webtoolkit

[IOC] Inversion of Control Containers and the Dependency
Injection pattern

http://www.martinfowler.com/articles/injection.html

[JAVA] Sun Corporation, Java Programming Language,
http://java.sun.com

[Kipp07] M. Assel and A. Kipp. A Secure Infrastructure for
Dynamic Collaborative Working Environments. In
Proceedings of the 2007 International Conference on
Grid Computing and Applications (GCA'07/ISBN #:1-
60132-032-9/CSREA), Editor: Hamid R. Arabnia, pp.
212-216, Las Vegas, USA, June 2007.

[Malawski07] M. Malawski, J. Kocot, E. Ciepiela, M. Bubak:
Optimization of Application Execution in the ViroLab
Virtual Laboratory; in Cracow Grid Workshop 2007
Workshop Proceedings, pp.65-70, ACC CYFRONET AGH
2008

[SPRING] Spring Framework, www.springframework.org

[SVNKIT] Subversion for Java: http://svnkit.com/

ViroLab D3.4 -version 1.0 Page 43 of 44

http://svnkit.com/
http://www.springframework.org/
http://java.sun.com/
http://www.martinfowler.com/articles/injection.html

[VIROLAB] The ViroLab Project Website. http://www.virolab.org

[VIROLAB-VL] The ViroLab Virtual Laboratory Website.
http://virolab.cyfronet.pl/

[VLINV] T. Bartyński, M. Malawski, M. Bubak Invocation of Grid
Operations in the ViroLab Virtual Laboratory; in Cracow
Grid Workshop 2007 Workshop Proceedings, pp.59-64,
ACC CYFRONET AGH 2008

ViroLab D3.4 -version 1.0 Page 44 of 44

http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw
http://virolab.cyfronet.pl/
http://www.virolab.org/

	1.Executive Summary
	2.Current Status of the Virtual Laboratory
	2.1.GridSpace Engine and Runtime Services
	2.1.1.GridSpace Engine
	2.1.2.Data Access Client (DAC)
	2.1.3.Experiment Repository (Application Repository Client)
	2.1.4.Grid Operation Invoker (GOI)
	2.1.5.GridSpace Application Optimizer (GrAppO)
	2.1.6.Grid Resources Registry

	2.2.Data Access
	2.3.Provenance
	2.4.Development status summary

	3.Integration of Runtime System with Middleware and Presentation Layer
	3.1.Integration with Experiment Planning Environment
	3.2.Integration with Experiment Management Interface
	3.3.Integration with Monitoring Infrastructure through Events Propagation

	4.Integration of Collaboration Tools with Portal, DAS and DRS
	5.Data Access Service
	5.1.Integration with ViroLab Portal
	5.2.Integration with Experiment Planning Environment
	5.3.Outlook on future work

	6.Provenance Tracking System (PROToS)
	6.1.Integration with Monitoring Infrastructure
	6.2.Integration with QUaTRO in Presentation Layer

	7.List of Publications
	8.Summary

