
Deliverable 3.3 Appendix 3
ViroLab Virtual Laboratory:

Virtual Laboratory Developers’ Manual

Project Start: 01/03/2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-027446

Website: http://www.virolab.org

Due-Date: 31-08-2007

Delivery: 13-09-2007

Lead Partner: CYFRONET

Project Coordinator UvA, Prof. Dr P.M.A. Sloot

Dissemination Level: Public

Status: Final

Approved: Quality Board, Steering
Group

Version: 1.0

Log of Document

Version Date Changes Summary Authors
0.1 29/08/2007 Initial version of the manual Tomasz Gubala

0.2 03/09/2007 Main contribution

Robert Pajak, Dariusz Krol,
Marek Kasztelnik, Piotr
Regiel, Eryk Ciepiela, Tomasz
Bartynski, Joanna Kocot, Piotr
Nowakowski

0.3 04/09/2007
Formatting extending GRR
paragraph, section 3.1 and
3.2

Marek Kasztelnik

0.4 05/09/2007
Formatting and minor
changes in section 4.1

Michał Pelczar

0.5 06/09/2007
Checked and refined GrAppO
and EMI parts.

Tomasz Gubala

0.6 06/09/2007
Checked, refined,
supplemented and formatted
sections: 2.1, 2.2.1, 2.3.

Eryk Ciepiela

0.7 06/09/2007 Reviewed and updated
section 2.2.3

Piotr Nowakowski

0.8 06/09/2007
Checked, refined,
supplemented and formatted
section 2.2.2

Tomasz Bartyński

0.9 07/09/2007 Minor changes Kuba Wach

1.0 13/09/2007 Manual title changed, minor
changes

Marian Bubak, Marek
Kasztelnik

Virolab D3.3 A3 version 1.0 Page 2 of 51

TABLE OF CONTENTS

 COPYRIGHT NOTICE.. 5

1. INTRODUCTION...6

1.1. TARGET AUDIENCE...6
1.2. MORE INFORMATION...6

2. GRIDSPACE ENGINE DEVELOPER’S MANUAL.. 7

2.1. ARCHITECTURE OF THE GRIDSPACE ENGINE...7
2.1.1. GSEngine API.. 9
2.1.2. GSEngine Core...12
2.1.3. GSEngine Application Repository Client API..16
2.1.4. GSEngine SVN Application Repository Client...17

2.2. ALTERING THE FUNCTIONALITY OF THE GRIDSPACE ENGINE...18
2.2.1. Adding New Java or Ruby Library Dependencies of the Engine...18
2.2.2. Adding Support for New Remote Computation Technologies..19
2.2.3. Adding New Types of Data Sources through DAC Connectors...25
2.2.4. Adding New Experiment Execution Optimization Techniques...25

2.3. ACCESS TO THE MONITORING AND PROVENANCE EVENTS SYSTEM.. 30
2.4. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT INFORMATION...30

3. GRIDSPACE SERVERS AND PORTLETS ADMINISTRATION MANUAL... 32

3.1. GRID RESOURCES REGISTRY INSTALLATION MANUAL..32
3.2. WEB RESOURCES REGISTRY BROWSER INSTALLATION MANUAL... 33
3.3. DOMAIN ONTOLOGY STORE INSTALLATION MANUAL.. 34

3.3.1. Downloading tools... 35
3.3.2. Installation and running...35
3.3.3. Setting up MySQL back-end database... 37
3.3.4. Loading ontology models... 37

3.4. EXPERIMENT MANAGEMENT INTERFACE INSTALLATION MANUAL.. 38
3.5. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT INFORMATION...39

4. PROTOS DEVELOPERS’ MANUALS..41

4.1. SEMANTIC EVENT AGGREGATOR CONFIGURATION MANUAL... 41
4.1.1. XML derivation.. 41
4.1.2. Object properties..42
4.1.3. Delegate derivation..44
4.1.4. Aggregation rules...46

4.2. AUTHORS CONTACT INFORMATION..47

 ABBREVIATIONS.. 48

 REFERENCES... 51

Virolab D3.3 A3 version 1.0 Page 3 of 51

List of Figures

FIGURE 2-1: MAIN COMPONENTS AND INTERFACES OF GSENGINE. GRIDSPACE ENGINE
IMPLEMENTATION INVOLVES SEVERAL TIGHTLY-COUPLED COMPONENTS; THE
INTERNAL COMPONENTS ARE GSENGINE CORE THAT IMPLEMENTS GSENGINE API AND
USES GSENGINE SVN APP REPO THAT, IN TURN, IMPLEMENTS GSENGINE APP REPO API;
THE EXTERNAL LIBRARIES SUCH AS: JRUBY 1.0 AND SVNKIT 1.1.2 ARE USED............................ 7

FIGURE 2-2: CLASS DIAGRAM OF SUPPORTED TYPES OF EVALUATION REQUEST. THE
EVALUATION REQUEST TYPES SET IS OPEN AND MAY BE EXPANDED IN THE FUTURE BY
PROVIDING AN APPROPRIATE EVALUATION REQUEST SUBCLASS AND THE
CORRESPONDING EVALUATION REQUEST SUPPORT SUBCLASS FOLLOWING SUCH A
DESIGN PATTERN... 9

FIGURE 2-3: GSENGINE CORE MAIN CLASSES WITH MARKED RELATIONS WITH GSENGINE
API CLASSES, WHICH ARE COLOURED AS YELLOW..13

FIGURE 2-4: SEQUENCE DIAGRAM OF THE EVALUATION SCENARIO... 14

FIGURE 2-5: GSENGINE CORE CLASSES EXTENDING JRUBY INTERFACES IN ORDER TO
PROVIDE APPLICATION CODE FROM AN ARBITRARY LOCATION. THE JRUBY INTERFACES
ARE COLOURED AS YELLOW... 15

FIGURE 2-6: SUPPORTING VARIOUS EVALUATION REQUEST TYPES – CLASS DIAGRAM.
CLASSES OF GSENGINE API ARE COLOURED AS YELLOW..16

FIGURE 2-7: GSENGINE APPLICATION REPOSITORY CLIENT API CLASSES................................ 17

FIGURE 2-8: GSENGINE APPLICATION REPOSITORY CLIENT CLASSES.. 18

FIGURE 2-9: OPTIMIZATION ALGORITHMS IN GRAPPO... 26

FIGURE 2-10: CONFIGURING GRAPPO WITH A FILE...28

FIGURE 2-11: CONFIGURING GRAPPO WITH AN OPTIMIZATION POLICY OBJECT...................29

FIGURE 3-12: THE FRONT PAGE OF A GENERIC SESAME INSTALLATION....................................36

FIGURE 3-13: THE PICTURE OF THE PROPER TESTING SEARCH RESULT.................................... 38

Virolab D3.3 A3 version 1.0 Page 4 of 51

COPYRIGHT NOTICE

Copyright (c) 2007 by Academic Computer Centre CYFRONET AGH. All rights
reserved.

Any use of the products described in this document is subject to the terms stated
in the GPL license agreement: http://opensource.org/licenses/gpl-license.php.

Virolab D3.3 A3 version 1.0 Page 5 of 51

http://opensource.org/licenses/gpl-license.php

1. INTRODUCTION
This document contains a set of manuals and tutorials for a person that would
like to administrate or extend existing ViroLab Virtual Laboratory. The sections
inside contains instructions how to download, configure and extend virtual
laboratory components.

1.1. TARGET AUDIENCE

The intended audience of this document includes any person that would like to
administrate (administrator) or extend (developer) ViroLab Virtual Laboratory.
Virtual laboratory components are created mostly in Java [JAVA] and Ruby
[RUBY] languages, thus knowledge about these programming languages is
crucial. ViroLab Virtual Laboratory components like Grid Resources Registry,
Domain Ontology Store, PROTos and DAS are deployed into third party container.
That is why administrator or developer has to have knowledge about containers
such as Tomcat [TOMCAT], Jetty [JETTY] and Globus Toolkit 4.0 [GT4].

1.2. MORE INFORMATION

This document is not the only source of information for future administrators
and developers. The ViroLab Virtual Laboratory web pages provide the most
recent and frequently updated versions of the enclosed tutorials. Please check:

http://virolab.cyfronet.pl

for a thorough, complete introduction to Virtual Laboratory and its mechanisms,
tools, runtime etc. In the upper right corner of the page you will find set of
hyperlinks to development sites, where you may :

• obtain the latest releases of the virtual laboratory modules

• read about the development plans and future release time schedule

• report a bug or a feature request, discuss it and monitor its lifetime

The authors of this manual and the software it describes would like to ask for the
assistance of all the developers that would like to use the virtual laboratory.
Please don’t hesitate to use the bug submission and feature request mechanism
in the virtual laboratory development web pages to suggest the authors how to
refine the software. With this process the tools we provide will be more useful
and productive for the future experiment developers.

Virolab D3.3 A3 version 1.0 Page 6 of 51

http://virolab.cyfronet.pl/

2. GRIDSPACE ENGINE DEVELOPER’S MANUAL

2.1. ARCHITECTURE OF THE GRIDSPACE ENGINE

GridSpace Engine (in short GSEngine) implementation involves several tightly-
coupled components.

The internal components (those developed in the scope of GSEngine effort) are
GSEngine Core that implements GSEngine API and uses GSEngine SVN App
Repo that, in turn, implements GSEngine App Repo API. GSEngine Core
provides GridSpace Engine core functionality, while GSEngine SVN App Repo is
an extension to the core with the support of Application Repository. Subversion
(SVN) [SVN] as the source code management (SCM) system fits well into the
idea of Application Repository since it enables versioning and collaboration. The
interfaces and implementing components are decoupled in order to enable using
of other implementations, e.g., these of Application Repository.

The aforementioned components use external libraries such as: JRuby 1.0 and
SVNKit 1.1.2. Having in mind that GScript is actually a Ruby language with
external libraries provided, JRuby [JRUBY] is used as a Ruby [RUBY] language
implementation written in Java that allows integration and cooperation between
Java code and Ruby code. SVNKit [SVNKIT] is used as a client of the SVN-based
implementation of Application Repository. The dependencies between all the
internal as well as external components of GSEngine are depicted on the diagram
in Figure 2-1.

id Component Model

GSEngine Core

GSEngine SVN App Repo

GSEngine App Repo

GSEngine API

JRuby

SVNKit

«realize»

«realize»

Figure 2-1: Main components and interfaces of GSEngine. GridSpace Engine implementation
involves several tightly-coupled components; the internal components are GSEngine Core that

implements GSEngine API and uses GSEngine SVN App Repo that, in turn, implements
GSEngine App Repo API; the external libraries such as: JRuby 1.0 and SVNKit 1.1.2 are used.

GSEngine incorporates the Virolab-specific libraries of GOI and DAC by including
them in the JRuby interpreter classpath, assuming that they are placed in the
directory pointed by GS_HOME environment variable. Moreover, Virolab-specific
libraries are provided with a GridSpace Engine Application Context that contains

Virolab D3.3 A3 version 1.0 Page 7 of 51

all the parameters required by the libraries and that is passed by GSEngine as
Ruby constants to the JRuby interpreter runtime (see: Table 2-1).

Attribute
name

Description
Value
Datatyp
e

Who
provides

Who uses
Ruby global constant
name

Optimization
Policy

Indicates
goal(s) of
GrAppO.
URL to an
optimization
policy
configuration
file is
needed.

URL EPE/EMI GrAppO
GS_OPTIMIZATION_
POLICY

GrAppO URL URL EPE/EMI GOI GS_GRAPPO_URL

GRR Base
URLs

list of
URLs

EPE/EMI GOI
GS_GRR_BASE_

URL

DAS URL URL EPE/EMI DAC GS_DAS_URL

PROToS URL URL EPE/EMI

M-Ring
GSMP-
enabled
log
appender

GS_PROTOS_URL

DOS URL URL EPE/EMI
Future
DOS
client

GS_DOS_URL

User handle

A SAML
portion with
Shibboleth
user handle

String EPE/EMI

delegation
to DAC
and GOI
for
accessing
resources

GS_USER_HANDLE

ACID

Application
Correlation
Identifier
(ACID)

String GSEngine

M-Ring
GSMP-
enabled
log
appender

GS_ACID

Table 2-1 GridSpace Engine Application Context that contains all the parameters required by
the GSEngine libraries (such as GOI and DAC) that is passed by GSEngine as Ruby constants to

the JRuby interpreter runtime.

Virolab D3.3 A3 version 1.0 Page 8 of 51

GridSpace Engine is to provide its clients realizations of InterpreterFaçade
interface for embedded evaluation (carried out in the same Java Virtual Machine)
as well as for evaluation performed in the remote service. At the current stage
the EmbeddedInterpreter realization is available.

GridSpace Engine is intended to support a set of evaluation request types such
as request for the evaluation of local file GScript, request for the evaluation of
explicitly provided GScript, and finally, of the script staged in the Application
Repository. The evaluation request types set is open and may be expanded in
the future by providing an appropriate evaluation request subclass and the
corresponding evaluation request support subclass following the design pattern
shown in Figure 2-2.

cd evaluation requests

ExplicitScriptEvaluationRequestSupport

LocalFileScriptEvaluationRequestSupport

RepositoryStagedScriptEvaluationRequestSupport

evalreq::
EvaluationRequest

evalreq::
ExplicitScriptEvaluationRequest

evalreq::
LocalFileScriptEvaluationRequest

evalreq::
RepositoryStagedScriptEvaluationRequest

«interface»
EvaluationRequestSupport

Component Model::
GSEngine SVN App Repo

GSEngine App Repo

+evaluationRequest

+evaluationRequest

+evaluationRequest

«realize»

Figure 2-2: Class diagram of supported types of evaluation request. The evaluation request types
set is open and may be expanded in the future by providing an appropriate evaluation request

subclass and the corresponding evaluation request support subclass following such a design
pattern.

2.1.1.GSEngine API

An entry point to the GSEngine API is the
cyfronet.gridspace.engine.InterpreterFacade interface, that provides two
evaluateScript overloaded methods as seen below.

Virolab D3.3 A3 version 1.0 Page 9 of 51

public interface InterpreterFacade {

public EvaluationResponse evaluateScript(
EvaluationRequest evaluationRequest, EvaluationCallback callback)
throws InterpreterException, InvalidEvaluationRequestException,

ScriptNotFoundException,
EvaluationRequestParameterNotFoundException,
UnsupportedEvaluationRequestType;

public EvaluationResponse evaluateScript(
EvaluationRequest evaluationRequest,

EvaluationRequest.Parameters parameters, EvaluationCallback
callback)
throws InterpreterException, InvalidEvaluationRequestException,

ScriptNotFoundException,
EvaluationRequestParameterNotFoundException,
UnsupportedEvaluationRequestType;

}

The other main classes of GSEngine API are:

• cyfronet.gridspace.engine.evalreq.EvaluationRequest - an abstract class
that represents the request for an application evaluation. It contains all
the data needed for creating evaluation context and obtaining the
application script. The subtypes defines a way how application code is
provided from arbitrary location (e.g. local files, files stored in exepriment
repository). Each subclass is serializable to the XML form discussed in a
section devoted to gsengine command line tool. Subclasses expose simple
setter methods for setting evaluation requests attributes. Available
subclasses:

o ExplicitScriptEvaluationRequest

o LocalFileScriptEvaluationRequest

o RepositoryStagedScriptEvaluationRequest

• cyfronet.gridspace.engine.evalreq.EvaluationRequest.Parameters - a
class that simply stores evaluation request parameters organized in a list.
The evaluation request is filled with the parameters values as explained
previously.

• cyfronet.gridspace.engine.EvaluationCallback - an interface that
establishes callback data transfer channel while evaluating a script.
Callback provides a way of streaming data during the call (input and
output streams), supporting interaction (data inputs) and notification and
information related to application evaluation status sent towards the
application executors. All of the member methods are called by GSEngine

Virolab D3.3 A3 version 1.0 Page 10 of 51

facade implementations. This interface code is highly self-explanatory and
is shown below.

public interface EvaluationCallback {

/**
 * Invoked when evaluation is complete.
 *
 *
 * @param result
 * serialized ruby object that is a result of the

application
 */
public void onEvaluationComplete(String result);

/**
 * This method is called just before application execution and

sets
 * GSEngine id id (GSEID)
 *
 * @param gseid
 */
public void setGseid(String gseid);

/**
 * This method is called in order to make GSEngine provided

with
 * output stream where the output of executed application has

to be
 * directed.

 *
 * @return
 */
public OutputStream getOutputStream();

/**
 * This method is called in order to make GSEngine provided

with
 * error stream where the error output of executed application has
to
 * be directed.

 *
 * @return
 */
public OutputStream getErrorStream();

/**

Virolab D3.3 A3 version 1.0 Page 11 of 51

 * This method is called in order to make GSEngine provided
with

 * input stream from which where the input of executed
application

 * has to taken from.
 *
 * @return
 */
public InputStream getInputStream();

/**
 * This method is called each time the application request for

data
 * to be provided by the application executor. The application is
 * blocking until this call returns.

 *
 * @param dataRequest
 * @return
 */
public String getData(String dataRequest);

/**
 * Invoked each time interpreter raises exception.
 *
 * @param interpreterException
 */
public void raise(InterpreterException interpreterException);

}

• cyfronet.gridspace.engine.EvaluationResponse - a class that represents a
result of evaluation after it is complete. It stores serialized form of Ruby
object returned by a script if any.

2.1.2.GSEngine Core

GSEngine Core is the core part and the facade for GSEngine in the same time. It
implements GSEngine API. The diagram from Figure 2-3 shows the structure of
the GSEngine Core.

Virolab D3.3 A3 version 1.0 Page 12 of 51

Figure 2-3: GSEngine Core main classes with marked relations with GSEngine API classes,
which are coloured as yellow.

EmbeddedInterpreter is the root class of GSEngine Core that realizes the
InterpreterFacade interface. It delegates resposibility of a processing of the
evaluation request to the Evaluation class objects that are instantiated one per
each evaluation request. Evaluation object takes care of evaluation request
throughout its whole lifecycle:

• First, Evaluation generates EvaluationCredentials - specific attributes
such as ACID (Application Correlation Identifier) or GSEID (GSEngine
Identfier) which are assigned to the the concrete application evaluation.

• Second, Evaluation creates ApplicationContext which contains of
attributes which provide context information for the GSEnigne runtime
libraries such as DAC and GOI. The library code is enabled to access the
Application Context attributes just like any other Ruby constants. For the
details about attributes please refer to Section 2.1.

• Next, Evaluation instantiates ScriptProvider. ScriptProvider is a factory
for GSEngineLoadService which role is to provide on JRuby interpreter's
demand the code of the application (hereby realizes JRuby LoadService
interface). At the runtime, when the demand for source code of external
file occurs, GSEngineLoadService delegates the source code request to the
appropriate EvaluationRequestSupport (discussed later), wraps source
code as a JRuby library (realization of JRuby Library interface) and load it
to the JRuby runtime.

Virolab D3.3 A3 version 1.0 Page 13 of 51

• Finally, Evaluation instantiates ruby runtime object with appropriate
ScriptProvider set and appropriate path to ruby libraries set. Then, ruby
runtime object performs actual evaluation of the application.

The subsequent step of the evaluation scenario are depicted in the sequence
diagram from Figure 2-5.

Figure 2-4: Sequence diagram of the evaluation scenario.

As long as GSEngine Core uses JRuby interpreter for evaluation of the application
with sources taken from arbitrary location, JRuby has to be extended with
GSEngine Core classes. GSEngine Core classes realizes JRuby interfaces as
shown in Figure 2-5.

Virolab D3.3 A3 version 1.0 Page 14 of 51

Figure 2-5: GSEngine Core classes extending JRuby interfaces in order to provide application
code from an arbitrary location. The JRuby interfaces are coloured as yellow.

As mentioned earlier, ScriptProvider realizes JRuby LoadServiceCreator
interface, GSEngineLoadService realizes JRuby LoadService interface.
GSEngineLoadService provides source code and wraps it as a
GSEngineExternalScript object that realizes JRuby Library interface. The
appropriate ScriptProvider instance is provided to the ruby runtime object so it
is used by JRuby interpreter as a script provider.

The architecture of GSEngine Core is intended to support any of possible types of
evaluation requests. Custom evaluation request is obliged to extend the
EvaluationRequest superclass. Moreover, it has to be provided corresponding
realization of EvaluationRequestSupport interface, and the mapping between
aforementioned two has to be stored in the ScriptProviderClass.

For the present, all of the three types defined in the GSEngine API are supported,
as shown in Figure 2-6.

Virolab D3.3 A3 version 1.0 Page 15 of 51

Figure 2-6: Supporting various evaluation request types – class diagram. Classes of GSEngine
API are coloured as yellow.

2.1.3.GSEngine Application Repository Client API

GSEngine Application Repository Client API is a generic API of a GSEngine
component that accesses application repositories (e.g. experiment repository).

Figure 2-7 contains a diagram of classes that belong to the client API (situated in
package cyfronet.gridspace.engine.apprepo), described further in this section.

Virolab D3.3 A3 version 1.0 Page 16 of 51

Figure 2-7: GSEngine Application Repository Client API classes.

The client API provides an interface (ApplicationRepositoryClient), that declares
methods for accessing application repository contents for the application users as
well as for their developers.

The interface ApplicationRepositoryConstants stores all the values specific to the
application repositories as opposed to ordinary file repositories (e.g. names of
the directories that constitute the application's structure and are common to all
applications in all application repositories).

2.1.4.GSEngine SVN Application Repository Client

GSEngine SVN Application Repository Client is an implementation of GSEngine
Application Repository Client API intended for accessing Subversion [SVN]
repositories. The library only implements the API methods and does not provide
any extensions to it.

Figure 2-8 shows the GSEngine SVN Application Repository Client classes and
their relations to the structures provided by client API (GSEngine Application
Repository Client API).

Virolab D3.3 A3 version 1.0 Page 17 of 51

Figure 2-8: GSEngine Application Repository Client classes.

The main class of the library is SVNApplicationRepositoryClientException, which
implements the ApplicationRepositoryClient interface. In case of errors a
SVNApplicationRepositoryClientException is thrown (an extension of
ApplicationRepositoryClientException). The *Handler classes define the client's
behavior when one of update (SVNApplicationRepositoryUpdateEventHandler) or
lock (SVNApplicationRepositoryLockHandler) is called on the repository.

For the detailed description of all the GSEngine SVN Application Repository Client
classes and methods please see code documantation (javadoc) of packages
cyfronet.gridspace.engine.apprepo.svn.*.

2.2. ALTERING THE FUNCTIONALITY OF THE GRIDSPACE ENGINE

2.2.1.Adding New Java or Ruby Library Dependencies of the Engine

Once you have installed GridSpace Engine with an environment variable pointing
at its home directory ($GS_HOME - in the case of Linux, %GS_HOME% - in the case of
Windows) you can add there the additional dependencies of both Java and Ruby
libraries you need while extending GridSpace Engine.

Having added external libraries (both Ruby and Java) you're enabled to use them
from the GridSpace application source code level.

Adding Ruby library dependency. In order to use external (not built-in within
GridSpace Engine) Ruby libraries all you need it to copy them to the
$GS_HOME/ruby or %GS_HOME%\ruby according to OS, Linux and Windows,
respectively.

Virolab D3.3 A3 version 1.0 Page 18 of 51

Alternatively, you may add external libraries to the JRuby distribution
($JRUBY_HOME/lib/ruby), although, consider that it make libraries shared in all
application launched by a jruby interpreter.

Adding Java library dependency. In order to use external (not built-in within
GridSpace Engine) Ruby libraries all you need it to copy them to the
$GS_HOME/java or %GS_HOME%\java according to OS, Linux and Windows,
respectively. That will result in including jars in the classpath, GridSpace Engine
command line tool. However, when using GridSpace Engine via its Java API all
the jars from the $GS_HOME/java/%GS_HOME%\java directory stil have to be present
in the Java application classpath.

2.2.2.Adding Support for New Remote Computation Technologies

GridSpace supports leading Grid middleware technologies. Currently, GridSpace
users can employ Web Services, MOCCA Grid components, EGEE jobs (LCG) and
WTS([WTS]) in experiments. It is planned to implement AHE and WSRF client
side libraries. Moreover, GOI and GRR design and implementation makes
enriching GSEngine with support for new technologies absolutely undemanding.
It requires only two things to be done:

1. extending Grid Operation Invoker by implementing adapter and resource
classes and placing them in appropriate directory

2. extending Grid Resource Registry by inserting technical information
describing new technology

This manual provides a step-by-step guide how to extend run-time capabilities of
GridSpace by adding support for new middleware technologies.

Extending Grid Operation Invoker

Grid Operation Invoker support for various middleware technologies is based on
adapters concept. GOI can be extended by adding adapter and resource classes
for new technology. Adapter is a factory that is capable to produce
representatives for all Grid Object Instances published in one concrete
middleware technology. Such representative should be an object of a resource
class, that extends GridResource class that can be found in
$GS_HOME/ruby/cyfronet/gridspace/goi/adapters/ directory. Resource object is a
proxy for Grid Object Instance and is able to interact with it in its specific
protocol, but from the experiment developer's point of view it acts as any other
Ruby object. Adapter class must expose one class method, create_instance,
which takes Hash object containing technology data and returns Grid Object
Instance representative of TechnologyResource class. Resource class must
implement only one method, initialize taking Hash with technology information.
This method semantics is very similar to Java constructor, it is called after Ruby
allocates memory for an objects and all arguments passed to new are passed to
initialize method that sets up object state. The first thing that needs to be done
in the body of this method is calling the initialize method of super class
(GridResource) with he following code:

def initialize(techInfo)
 super(techInfo)

Virolab D3.3 A3 version 1.0 Page 19 of 51

 #method body
end

Next, TechnologyResource object must be made capable to handle invocations of
operations on Grid Object Instance. Developer is not limited in the way how to
achieve it, albeit it is strongly recommended to implement the method_missing
operation, which takes responsibility for delegating operation execution to Grid
Object Instance and returning result.

Code snippets below present the simplest adapter and resource classes that
support Web Service technology and explains what activities are performed.

require 'cyfronet/gridspace/goi/adapters/ws_resource.rb'

require 'java'

if !defined? JLogger

 include_class('org.apache.log4j.Logger'){|package,name|"J#{name}"}

end

class WsAdapter

 @@logger = JLogger.getLogger('goi.adapter.ws')

 def WsAdapter.create_instance(wsTechInfo)

 @@logger.debug('Using service ' + wsTechInfo['endpoint'])

 gridObjectInstance = WsResource.new(wsTechInfo)

 return gridObjectInstance

 end

end

Lets inspect what is done in this adapter:

1. WsResource class is required

2. Java support is enabled by requiring 'java'

3. log4j class is included if it not already defined

4. adapter class is defined

o class variable, @@logger is defined that is used to print debug
information and in future will be used to integrate GOI with
monitoring infrastructure

o representative for Grid Object Instance is created and retuned

Virolab D3.3 A3 version 1.0 Page 20 of 51

require 'cyfronet/gridspace/goi/adapters/grid_resource'

require 'java'

if !defined? JLogger

 include_class('org.apache.log4j.Logger') {|package,name| "J#{name}"}

end

class WsResource < GridResource

 attr_reader :soap

 def initialize(techInfo)

 super(techInfo)

 # ...

 end

 def method_missing(methodSymbol, *args)

 # ...

 end

end

The code above:

1. requires GridResource class, enables Java usage and include log4j class

2. WsResource class is defined

o it extends GridResource

o defines local variable soap and create getter method for it

o defines initialize method (body of this method is not included)

o defines method_missing that delegates operation invocations to
Grid Object Instance and returns result (body of this method is not
included)

Source code of WsAdapter and WsResource classes can be found in
ws_adapter.rb and ws_resource.rb files placed in the
$GS_HOME/ruby/cyfronet/gridspace/goi/adapters directory.

Since adapter class is required during run-time, adapters' class names must obey
certain naming convention. Due to the fact, that Ruby requires files, which
names does not necessarily correspond to the name of class that is inside,
naming convention is also imposed on file names. The naming pattern is as
follows:

Virolab D3.3 A3 version 1.0 Page 21 of 51

• Adapter class name is a concatenation of two words. Technology name,
starting with capital letter with all following letters in lower case, and
'Adapter'. For instance, adapter for Web Services is named WsAdapter (it
could be named WebserviceAdapter as well, but WebServiceAdapter is not
a valid name), adapter for MOCCA is named MoccaAdapter.

• File name should reflect the name of the adapter class it contains
according to the Ruby convention, that is to use only lower case letters
and underscore characters (uppercase letter in class name must be
replaced with underscore and lower case letter). Files must have 'rb'
extension. File names for adapters mentioned above are ws_adapter.rb
and mocca_adapter.rb.

It is not obligatory to name TechnologyResource classes in accordance to the
mentioned naming convention, although it is profitable to name them
analogically to adapter classes. For instance classes of representatives for Web
Services is named WsResource and for MOCCA components is named
MoccaResource, files contaning these classes are ws_resource.rb and
mocca_resource.rb.

Files containing adapter and resource classes should be placed in
$GS_HOME/ruby/cyfronet/gridspace/goi/adapters directory. If any additional
JRuby classes are used they should be placed in
$GS_HOME/cyfronet/gridspace/goi/utils. These files should be required within
adapter and resource classes like this:

require 'cyfronet/gridspace/goi/utils/additional_class_name'

Adapter class can be implemented in JRuby, therefore it can contain pure Ruby
code, as well as include and use Java objects. If any Java classes, other than
those provided by Java Runtime Environment, are used, jar files containing
theses classes should be placed in $GS_HOME/java/ directory.

For more information on Ruby language please refer to [PR] and [DPIR].

Extending Grid Resource Registry

Grid Resources Registry is responsible for storing information about any
accessible resources in ViroLab environment. What is more, it hides resources
technologies complexity from the user. That is why if new technology is added to
GOI, GRR has to be extended by adding support for this technology.

Before new technology will be added to GRR by the user, he or she has to be
able to download, compile and pack GRR. For more information about this
processes see online GRR tutorial [START_EXT_GRR].

To add new technology to GRR a few steps are needed. At the beginning the
name of the new technology has to be added to enum class
cyfronet.gridspace.grr.GridObjectType located in grr-dto GRR module.
Currently there are available following technologies:

public enum GridObjectType {
 /** Web Service (WS) */

Virolab D3.3 A3 version 1.0 Page 22 of 51

 WS,

 /** Metacomputing-oriented CCA Framework (MOCCA) */
 MOCCA,

 /** Local gem */
 LOCAL_GEM,

 /** Web Services Resource Framework (WSRF). Not implemented yet,
 * but planned.
 */
 WSRF,

 /** Grid job. Not implemented yet, but planned. */
 JOB
}

All information about resources technologies infos are stored in database and
hibernate [HIBERNATE] framework is used to map this information to object
oriented Java [JAVA] classes and vice versa. New class that will be used to map
information about new technology from object oriented to relations database
world should be placed in
cyfronet.gridspace.grr.businessobject.technology package of the grr-hbn
GRR module.

A simple example class that describes new technology is presented below.

@Entity // 1
@DiscriminatorValue("NewTechnology") // 2
public class NewTechnologyImplementation extends
 GridObjectImplementation { // 3
 private String additionalInformation; // 4

public void setAdditionalInformation(String additionalInformation)
{ // 5
 this.additionalInformation = additionalInformation;
}

public String getAdditionalInformation(String additionalInforma-
tion)
{ // 5
 return additionalInformation;
}

Virolab D3.3 A3 version 1.0 Page 23 of 51

@Override
public Map<String, String> getTechnicalInfo()
{
 Map<String, String> technicalInfo = super.getTechnicalInfo();
 //put some additional technical inforamtion
 technicalInfo.put("additionalInformation",additionalInformation)
;//6
 return technicalInfo;
}
}

New technology class has to have additional information that is needed by
hibernate [HIBERNATE] and GRR mechanisms to create technical info for GOI:

1. Class has to define @Entity annotation that is used to map class instance to
relations database structure

2. Class has to define @DiscriminatorValue("NewTechnology") annotation.
It is necessary for hibernate inheritance mechanism. This annotation takes
one String parameter that has to be specific for concrete technology.

3. Class has to extend
cyfronet.gridspace.grr.businessobject.GridObjectImplementation
that defines basic information about technology and annotations necessary
to map GridObjectImplementation and all classes that extend it to relational
database.

4. Class can add additional information (parameters) specific for new
technology

5. All additional parameters have to be accessible through getters and setters
methods

6. And at the end if there is technology specific information, new technical info
for GOI has to be created

After new technology class is created then this class has to be added to hibernate
configuration file (spring-config.xml) that is located in grr-ws module:

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.AnnotationS-
essionFactoryBean">
 <property name="dataSource"><ref bean="mysqlDataSource"/></prop-
erty>
 <property name="hibernateProperties">
 <ref bean="hibernateProperties"/>
 </property>
 <property name="configurationClass">

Virolab D3.3 A3 version 1.0 Page 24 of 51

 <value>org.hibernate.cfg.AnnotationConfiguration</value>
 </property>
 <property name="annotatedClasses">
<value>
 cyfronet.gridspace.grr.businessobject.technology.WSImplementa-
tion
</value>
<value>
 cyfronet.gridspace.grr.businessobject.technology.MOCCAImplemen-
tation
</value>
<!-- new implementation -->
<value>
cyfronet.gridspace.grr.businessobject.technology.NewTechnologyIm-
plementation
</value>
<!-- end -->
 </list>
 </property>
</bean>

At the end new registry has to be compiled, packed and deployed to tomcat
container (see start extending GRR online tutorial [START_EXT_GRR] and section
3.1 for more infos).

2.2.3.Adding New Types of Data Sources through DAC Connectors

Extendability of DAC to cover new data sources is currently achieved by
extending the DACConnectClass constructor to handle additional types of source
labels. DACConnectClass is a JRuby class and can be edited as present in the
code of the GSEngine Runtime System (it is not compilable). In particular, it is
possible to extend DAC to handle additional types of relational databases. This is
done by inserting an appropriate JDBC plugin (usually a JAR archive) in the
classpath of GSEngine and adding a clause within DACConnectClass instructing
the module to use that plugin for a given db_tech input value. While this still
requires modifying DAC code, it is envisioned that a more automated data source
plugin handling mechanism will be present in the final version of DAC.

It is currently planned to extend DB tech support with dynamic data storage and
object-based representation (as Data Objects) inside the experiment scripts.

2.2.4.Adding New Experiment Execution Optimization Techniques

Introduction.

Virolab D3.3 A3 version 1.0 Page 25 of 51

A module responsible for optimization of an application execution in GSEngine is
called Grid Application Optimizer (in short GrAppO). The algorithm used for
optimization are executed by a dedicated GrAppO component - Optimization
Engine. Such algorithm has to be an implementation of an interface (namely
cyfronet.gridspace.grappo.engine.OptimizationAlgorithm), therefore allowing
multiple realizations of an optimization algorithm to be pluggable into the
optimizer. Which algorithm implementation will be used for optimization is a
matter of external configuration. However, there always is a default optimization
algorithm available. On Figure 2-9 a sample relation between the general
optimization algorithm and its different implementations is shown.

Figure 2-9: Optimization algorithms in GrAppO.

OptimizationAlgorithm Interface.

The interface cyfronet.gridspace.grappo.engine.OptimizationAlgorithm declares
the following two methods:

• OptimizationResult optimize(GObDataSet optimizationData) throws
OptimizationException

for optimization concerning one Grid Object at a time (so called short-sighted
optimization), and

• List<OptimizationResult> optimize(List<GObDataSet>
optimizationData) throws OptimizationException

for optimization of a group of Grid Objects.

Each algorithm that is going to be used by Grid Application Optimizer has to be
developed as a class implementing the OptimizationAlgorithm interface, and thus
the both mentioned methods. The methods results and parameters will be
described further in this section.

OptimizationResult (cyfronet.gridspace.grappo.OptimizationResult) returned in
both methods is an object wrapping the result of optimization of one Grid Object
- either an identifier of Grid Object Instance or an identifier of Grid Object
Implementation with resource location where the implemenation will be

Virolab D3.3 A3 version 1.0 Page 26 of 51

deployed. An OptimizationResult class instance can be created in the body of
each method with one of the constructors:

• OptimizationResult(String gobClassName, Long gobInstanceID)

or

• OptimizationResult(String gobClassName, Long gobImplementationID,
String resourceURI)

GObDataSet (cyfronet.gridspace.grappo.gob.GObDataSet) that appears as a
parameter in both optimization methods (optimize(...)) carries all the data
concerning available Grid Object Implementations of a given Grid Object Class,
their Grid Object Instances and resource locations. The class provides methods:

• Map<Long, GridObjectImplementation> getGridObjectImplementations()

• Map<Long, GridObjectInstance> getGridObjectInstances()

• Map<String, H2OKernel> getKernels()
that return respectively:

• a map (java.lang.Map) of Grid Object Implementation representations,
with implementation's identifiers as keys,

• a map (java.lang.Map) of Grid Object Instance representations, with
instance's identifiers as keys,

• a map (java.lang.Map) of resource representations, with their locations as
keys (for now only the H2O kernels are taken into consideration).

The representations of the mentioned entities are simple classes located in
package cyfronet.gridspace.grappo.gob. Their detailed API can be browsed at
[GRAPPO-API].

The GObDataSet class offers also rankings of all its contents, which can be used
through methods:

• void addGObImplementationRankingPoints(long id, int points)

• int getGObImplementationRankingPoints(long id)

• void addGObInstanceRankingPoints(long id, int points)

• int getGObInstanceRankingPoints(long id)

• void addKernelRankingPoints(String url, int points)

• int getKernelRankingPoints(String url)

Virolab D3.3 A3 version 1.0 Page 27 of 51

where points is the number of ranking points for a
GObImplementation/GObInstance/resource with given id/url (the latter in the
case of a resource).

Note: Currently (up to version 0.3.0 of GSEngine), the Grid Resources Registry
does not provide information about available resources (H2O kernels) and their
locations, therefore the getKernels() and get/addKernelRankingPoints(...)
methods should not be used.

Optimization Algorithm Configuration.

The class providing implementation of OptimizationAlgorithm has to be specified
either in optimization policy configuration file or as a field of OptimizationPolicy
object, passed to Grid Application Optimizer in its constructor. The situations are
illustrated by Figure 2-10 and Figure 2-11, respectively.

Figure 2-10: Configuring GrAppO with a file.

In the first case the GrAppO constructor is called with a String parameter
pointing to location of a configuration XML or .properties file. The file should
contain Optimization Policy configuration, including a line:

<properties>
...
 <entry
 key="optimization.algorithm">qualified.AlogrithmClassName</en-
try>
</properties>

if it is an XML file, or

optimization.algorithm=qualified.AlogrithmClassName

in case of a .properties file. The qualified.AlogrithmClassName should be
replaced with a qualified name of the class implementing the
OptimizationAlgorithm interface, for example :

cyfronet.gridspace.grappo.sample.RandomOptimizationAlgorithm.

It is important that the class should have a default constructor. If the described
option is not specified, a default (random) algorithm will be used.

Virolab D3.3 A3 version 1.0 Page 28 of 51

Figure 2-11: Configuring GrAppO with an optimization policy object.

The second way to configure an optimization algorithm is to use its constructor in
which the parameter is of OptimizationPolicy
(cyfronet.gridspace.grappo.configuration.OptimizationPolicy) class. The
supplied parameter has to be an OptimizationPolicy class instance (created with
a default constructor) with optimizationAlgorithm field set to the algorithm of
choice. To do this, an appropriate setter method is provied, namely:

• void setOptimizationAlgorithm(OptimizationAlgorithm
optimizationAlgorithm)

in which the parameter should be an instance of a class implementing the
OptimizationAlgorithm interface.

Other Features Configured with Optimization Policy.

Apart from the optimization algorithm implementation, optimization policy serves
to configure the following features:

1. Preferred implementation type – defines which service implementation
technology should be preferred to others (e.g. the preference could be given
to services implemented as MOCCA components). It also says whether other
than preferred implementation technologies will be allowed

• property key:

o type preferrence: preferred.service.type

o allowing other implementation technologies:
void setPreferredType(GridObjectType preferredType)

• OptimizationPolicy setter method:

o type preferrence: preferred.strict

o allowing other implementation technologies:
void setStrictTypePreference(boolean strictTypePreference)

2. Whether Monitoring / Provenance Tracking System should be contacted to
obtain useful optimization data or the connection shouldn’t be allowed

• property key: use.monitoring / use.provenance

Virolab D3.3 A3 version 1.0 Page 29 of 51

• OptimizationPolicy setter methods:
void setUseMonitoring(boolean useMonitoring)
void setUseProvenance(boolean useProvenance)

Additional Information :

• Grid Application Optimizer API [GRAPPO-API]

• A MSc Thesis on the optimization of a Grid application execution [OPT-
THESIS]

2.3. ACCESS TO THE MONITORING AND PROVENANCE EVENTS SYSTEM

All the modules incorporated into GridSpace Engine which indeed take part in the
application evaluation are enabled to emit events related to it. Such events may
be forwarded through the monitoring data bus and reach monitoring data
consumers such as a provenance system.

As long as entirely all modules of GridSpace Engine are written either in Java or
Ruby languages they have an access to the Java classes. Therefore, GridSpace
Engine uses log4j [LOG4J] along with a dedicated logging category, namely
monitoring, with assigned dedicated logging appender that constitutes an entry
point to the monitoring data bus.

The following example shows the sample Ruby method which emits the message
from withing application evaluation, using the Application Correlation ID (ACID).

 def log(msg)
 Logger.getLogger("monitoring").info('Message from an application
 '+ GS_ACID + ': ' + msg)
 end

For the present, they are not any established set of events types that are
recognizable for the monitoring and provenance system. In the future the event
types will be defined and the Java classes representing events of each defined
type will be provided.

2.4. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT
INFORMATION

The entire source code of the GridSpace Engine is accessible through the
Subversion repository (the anonymouns read-only access is granted for
everyone):

#> svn checkout https://gforge.cyfronet.pl/svn/gsengine

Should you find any bugs, missing functionality or you’d like to have some nice
new features implemented, please use the ticket emission and management
system on the Trac website of the GridSpace Engine:

• Viewing tickets: http://virolab.cyfronet.pl/trac/vlruntime/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/vlruntime/newticket

Virolab D3.3 A3 version 1.0 Page 30 of 51

http://virolab.cyfronet.pl/trac/vlruntime/newticket
http://virolab.cyfronet.pl/trac/vlruntime/report

You do not need any account for that, tickets could be submitted anonymously.

Authors list: Joanna Kocot, Eryk Ciepiela, Piotr Nowakowski, Tomasz Bartyński,
Maciej Malawski.

Developers team contact person: Eryk Ciepiela [e.ciepiela@cyfronet.pl].

Virolab D3.3 A3 version 1.0 Page 31 of 51

3. GRIDSPACE SERVERS AND PORTLETS ADMINISTRATION
MANUAL

3.1. GRID RESOURCES REGISTRY INSTALLATION MANUAL

Below there is a list of instructions needed to run the Grid Resources Registry.

1. Download, install and set the home directory of the Tomcat server
[TOMCAT]. The preferred version of the Tomcat server is 5.5.x or 6.0.x and
it can be downloaded from the Tomcat site (http://tomcat.apache.org).
After unpacking the distribution, set the environmental variable
CATALINA_HOME so it points to the Tomcat home directory.

2. Download the newest version of Grid Resources Registry from maven 2
repository (notice that SNAPSHOT version is not stable)

#debian based linux systems
wget http://virolab.cyfronet.pl/maven2/cyfronet/gridspace/grr/grr-
ws/$GRR_VERSION/grr-ws-$GRR_VERSION.war

3. install mysql

#debian based linux systems
sudo apt-get install mysql-server

4. Create new database and database user

create database database_name;
grant all on database_name.* to 'user_name'@'localhost' identified
by 'password'

5. Unwar downloaded GRR distribution to

#notice that war is a zip archive
$CATALINA_HOME/webapps/grr_name

6. Edit spring-config.xml

vim $CATALINA_HOME/webapps/grr_name/WEB-INF/spring-config.xml

7. Set correct database name, user name and password

<bean id="mysqlDataSource" class="org.springframework.jdbc.data-
source.DriverManagerDataSource">
 <property name="driverClassName">
 <value>com.mysql.jdbc.Driver</value>
 </property>
 <property name="url">
 <value>jdbc:mysql:///database_name</value>
 </property>

Virolab D3.3 A3 version 1.0 Page 32 of 51

http://tomcat.apache.org/

 <property name="username"><value>user_name</value></property>
 <property name="password"><value>password</value></property>
</bean>

8. Uncomment

<prop key="hibernate.hbm2ddl.auto">create</prop>1

9. Start Tomcat

$CATALINA_HOME/bin/startup.sh (linux)
$CATALINA_HOME\bin\startup.bat (windows)

10. Stop Tomcat

$CATALINA_HOME/bin/shutdown.sh (linux)
$CATALINA_HOME\bin\shutdown.bat (windows)

11. Comment (we don't want database structure to be created every time
Tomcat is (re)started)

<!--<prop key="hibernate.hbm2ddl.auto">create</prop>-->

12. Start Tomcat

$CATALINA_HOME/bin/startup.sh (linux)
$CATALINA_HOME\bin\startup.bat (windows)

13. GRR runs, see localhost:8080/grr_name/services for available web services
WSDL's

3.2. WEB RESOURCES REGISTRY BROWSER INSTALLATION MANUAL

Below there is a list of instructions needed to run the Grid Resources Registry.

1. Download, install and set the home directory of the Tomcat server. The
preferred version of the Tomcat server is 5.5.x or 6.0.x and it can be
downloaded from the Tomcat site (http://tomcat.apache.org). After
unpacking the distribution, set the environmental variable CATALINA_HOME
so it points to the Tomcat home directory.

2. Download the newest version of Grid Resources Registry from maven 2
repository (notice that SNAPSHOT version is not stable)

1 If this property is uncommented, a database structure will be created every
time Tomcat is (re)started

Virolab D3.3 A3 version 1.0 Page 33 of 51

http://tomcat.apache.org/

#debian based linux systems
wget http://virolab.cyfronet.pl/maven2/cyfronet/gridspace/grr/grr-
web-browser/$GRR_VERSION/grr-web-browser-$GRR_VERSION.war

3. Unwar downloaded GRR Web Browser distribution (notice that war is a zip
archive)

#notice that war is a zip archive
$CATALINA_HOME/webapps/grr_name

4. Open $CATALINA_HOME/webapps/grr_web_browser_name/WEB-
INF/classes/properties.xml file and set VO configuration properties file
url.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/proper-
ties.dtd">
<properties>
 <comment>GRR Web Browser properties</comment>
 <entry key="voconfig.url">
 http://virolab.cyfronet.pl/config/properties-SNAPSHOT.xml
 </entry>
</properties>

5. (Re)start Tomcat

#linux
$CATALINA_HOME/bin/shutdown.sh
$CATALINA_HOME/bin/startup.sh

#windows
$CATALINA_HOME\bin\shutdown.bat
$CATALINA_HOME\bin\startup.bat

6. Web browser is available at
http://localhost:8080/grr_web_browser_name/cyfronet.gridspace.grr.web.
browser.ResourcesBrowser/ResourcesBrowser.html

3.3. DOMAIN ONTOLOGY STORE INSTALLATION MANUAL

The setup of a new installation of the Domain Ontology Store takes several
required components:

• a web server able to serve the web application front-end

Virolab D3.3 A3 version 1.0 Page 34 of 51

• an ontology store that operates as the main server part that provides
the business logic

• the ontology models themselves that should be loaded into the store to
populate it

• (optional, yet strongly recommended) a database backend for
performance, scalability and persistence reasons.

The manual below provides instructions how to set up such a store with specific
tools. It is possible that some of those tools could be exchanged for different
ones. Although this manual only covers Linux installation, the same procedure
should be similar for other operating systems as 100% of software used is
developed in Java (apart from the optional back-end database).

3.3.1.Downloading tools

In order to setup an environment ready for DOS installation, please download:

• Java JRE, the latest update in 1.5.0 version

o http://java.sun.com/javase/downloads/index_jdk5.jsp

o you may also try to use ready, on-board Java usually provided with
many Linux distributions

• Jetty Web Server (tested with 6.0.1)

o http://jetty.mortbay.com/

• Sesame RDF store (tested with 1.2.7)

o http://openrdf.org/

For optional (through encouraged) MySQL database back-end support, you'll also
need:

• MySQL JDBC Java Connector (tested with 5.0.7)

o http://dev.mysql.com/downloads/connector/j/5.0.html

3.3.2.Installation and running

Java JRE installation.

• Change the rights of the downloaded JRE file to have it executable

• Run the file and answer yes for the license agreement

o The package will decompress to your current directory with a proper
subdirectory name

• Set the JAVA_HOME environment variable to point to that subdirectory

• If you like, add JAVA_HOME/bin entry to your PATH variable for convenience

Sesame and Jetty installation.

Virolab D3.3 A3 version 1.0 Page 35 of 51

• Decompress both jetty-x.y.z.zip and sesame-x.y.z-bin.tar.gz packages
to separate directories

o There should be a sesame.war in the sesame-x.y.x/lib subdirectory

• Create a sesame subdirectory inside jetty-x.y.z/webapps

• Decompress the sesame.war file inside the newly created webapps/sesame
location

• Edit jetty-x.y.z/etc/jetty.xml to change important settings, like e.g.
server port number, log file etc.

• Copy webapps/sesame/WEB-INF/system.conf.example to webapps/sesame/WEB-
INF/system.conf for a fresh configuration

• Edit the system.conf file and add any users you'd like in <userlist> part

o other setting changes there are also possible

Running the server.

After these steps you should be ready to start a fresh ontology server

• Go to jetty-x.y.z/

• Type: java -jar start.jar etc/jetty.xml
o This should make it run; check with your browser:

http://your.server.address:jettyport/sesame/index.jsp and
compare it with the Sesame front page in Figure 3-12 (yours should
be similar with just different server name)

o You have just a bunch of generic, empty repositories at the moment
- we'll try to fix this in subsequence sections

• You can shutdown the server by simply killing the running java process.

Figure 3-12: The front page of a generic Sesame installation.

Virolab D3.3 A3 version 1.0 Page 36 of 51

3.3.3.Setting up MySQL back-end database

We assume you have an access to a MySQL database server. Sesame is also able
to work with PostgreSQL if you like. Please, set up (or ask the database
administrator to) a new, empty data base called e.g. sesame and grant remote
access rights for you (you may, if you like, set up a dedicated MySQL user for
Sesame).

Now edit jetty-x.y.z/webapps/sesame/WEB-INF/system.conf and add the following
element as a subpart of the <repositorylist> section:

<repository id="dos-rdfs-db">
 <title>DOS RDFS DB</title>
 <sailstack>
 <sail
 class="org.openrdf.sesame.sailimpl.sync.SyncRdfSchemaReposito-
ry"/>
 <sail
 class="org.openrdf.sesame.sailimpl.rdbms.RdfSchemaRepository">
 <param name="jdbcDriver" value="com.mysql.jdbc.Driver"/>
 <param name="jdbcUrl"
 value="jdbc:mysql://your.mysql.server:3306/sesame">
 <param name="user" value="mysql-user-name"/>
 <param name="password" value="mysql-user-password"/>
 </sail>
 </sailstack>
 <acl worldReadable="true" worldWritable="false">
 <user login="testuser" readAccess="true" writeAccess="true"/>
 </acl>
</repository>

One final thing you need is the MySQL connector:

• Decompress mysql-connector-java-5.0.7.zip file

• Copy mysql-connector-java-5.0.7/mysql-connector-java-5.0.7-bin.jar to
webapps/sesame/WEB-INF/lib directory

Now just shutdown and start the Jetty server again. This time you should be able
to find the DOS RDFS DB repository in the drop-down list on the main screen -
choose it and you are there: in the middle of the store, able to read and explore
it. In order to write anything, you just use the default testuser account (see the
webapps/sesame/WEB-INF/system.conf file for password).

In order to use another Sesame user for this:

• Edit the <acl> part of the repository section you've just added in
webapps/sesame/WEB-INF/system.conf

• Run http://your.server.address:jettyport/sesame/config URL in your
browser and supply the Sesame administrator password (it's usually
admin by default) to make the server reread its configuration dynamically.

3.3.4.Loading ontology models

Virolab D3.3 A3 version 1.0 Page 37 of 51

Having a fresh repository set up and write access rights, you are ready for the
final step of loading models. For the purpose of this tutorial we'll use the ViroLab
domain ontology models:

• http://virolab.cyfronet.pl/onto/

o we will focus on the most important vlom-upper.owl and vlom-
data.owl models

Open your Sesame web interface and from there:

• Load our brand-new DOS RDFS DB repository

• Login to get the write rights

• In the upper Modify actions bar click the Add (www) link

• Paste in http://virolab.cyfronet.pl/onto/vlom-upper.owl URL in the first
form and press the Add data button below

• Repeat the same action for http://virolab.cyfronet.pl/onto/vlom-
data.owl file

In order to test if the loading procedure was successful:

• In the upper Read actions bar follow the Explore link

• Type in Patient in the second row (labeled Or do a substring search:) and
press the Find string button

o A small result table should appear with a single
http://www.virolab.org/onto/data/Patient resource there (see
Figure 3-13)

Figure 3-13: The picture of the proper testing search result.

And this is it. A new instance of the Domain Ontology Store is operational and
accessible.

3.4. EXPERIMENT MANAGEMENT INTERFACE INSTALLATION MANUAL

Below is a list of instructions needed to run the EMI portlets.

Virolab D3.3 A3 version 1.0 Page 38 of 51

http://virolab.cyfronet.pl/onto/

1. Download, install and set the home directory of the Grid Space Engine.

The latest release of the Grid Space engine can be obtained from the GSEngine
download site:

• http://virolab.cyfronet.pl/trac/vlruntime

After unpacking the distribution, set the environmental variable GS_HOME so it
points to the GSEngine home directory.

2. Download, install and set the home directory of the JRuby interpreter.

The preferred version of the JRuby distribution is 1.0 and it can be downloaded
from the JRuby download site (http://www.jruby.org/). After unpacking the
distribution, set the environmental variable JRUBY_HOME so it points to the
JRuby home directory.

3. Download, install and set the home directory of the Tomcat server.

The preferred version of the Tomcat server is 5.5.x and it can be downloaded
from the Tomcat download site (http://tomcat.apache.org/). After unpacking the
distribution, set the environmental variable CATALINA_HOME so it points to the
Tomcat home directory.

4. Download and install the Gridsphere portal.

The preferred version of the Gridsphere portal is 3.0.7 and it can be downloaded
from the Gridsphere download site
(http://www.gridsphere.org/gridsphere/gridsphere/guest/download/). After
unpacking the distribution run:

• ant install
in the Gridsphere home directory. This will build and deploy the Gridsphere
application onto the Tomcat server.

5. Check out the EMI portlets project from the subversion repository at
https://virolab.cyfronet.pl/svn/emi:

• svn co https://virolab.cyfronet.pl/svn/emi

and install the project.

After checking out the project set the home directory of the Gridsphere in the
build.properties file by changing the gridsphere.home property. It is also
required to copy all the jar files shipped with the GSEngine distribution and
stored in the java folder of the main GSEngine directory into the lib directory of
EMI project. After that run:

• ant install
in the main directory of the EMI project directory and start the Tomcat server.

3.5. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT
INFORMATION

Virolab D3.3 A3 version 1.0 Page 39 of 51

https://virolab.cyfronet.pl/svn/emi
http://www.gridsphere.org/gridsphere/gridsphere/guest/download/
http://tomcat.apache.org/
http://www.jruby.org/
http://virolab.cyfronet.pl/trac/vlruntime

The entire source code of the GRR, DOS and EMI modules is accessible through
the Subversion repository (the anonymouns read-only access is granted for
everyone):

#> svn checkout https://gforge.cyfronet.pl/svn/grr
#> svn checkout https://gforge.cyfronet.pl/svn/dos
#> svn checkout https://virolab.cyfronet.pl/svn/emi

Should you find any bugs, missing functionality or you’d like to have some nice
new features implemented, please use the ticket emission and management
system on the Trac website. For GRR and DOS modules:

• Viewing tickets: http://virolab.cyfronet.pl/trac/vlruntime/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/vlruntime/newticket

For the EMI module:

• Viewing tickets: http://virolab.cyfronet.pl/trac/emi/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/emi/newticket

You do not need any account for that, tickets could be submitted anonymously.

Authors list and contact information: Marek Kasztelnik (GRR)
[m.kasztelnik@cyfronet.pl], Tomasz Gubała (DOS) [gubala@science.uva.nl],
Daniel Harężlak (EMI) [d.harezlak@cyfronet.pl].

Virolab D3.3 A3 version 1.0 Page 40 of 51

http://virolab.cyfronet.pl/trac/emi/newticket
http://virolab.cyfronet.pl/trac/emi/report
http://virolab.cyfronet.pl/trac/vlruntime/newticket
http://virolab.cyfronet.pl/trac/vlruntime/report

4. PROTOS DEVELOPERS’ MANUALS

4.1. SEMANTIC EVENT AGGREGATOR CONFIGURATION MANUAL

Semantic Event Aggregator is responsible for building ontological information
from xml data. The component is configured by extension ontology containing
information of how to aggregate monitoring events and how to transform xml
data into ontology individuals. This information is provided in a declarative
convention. In such approach, in order to configure the aggregator, there should
be provided declarations referring to:

• the conditions when aggregation should be triggered

• the derivation of instantiated individuals

The aggregator constantly monitors the gathered xml documents regarding the
aggregation rules. Whenever a new aggregation is triggered, aggregator is
informed of what classes should be instantiated and searches aggregated xml
data for properties derivations.

The domain extension ontology http://www.virolab.org/onto/extension defines
following concepts:

• Derivation concept describing how to establish property value

• derivedFrom annotation property that associates Derivation with
class or property

There exist two concepts derived from Derivation, namely:

• XMLDerivation refers to properties directly accessible in xml data

• DelegateDerivationrefers to properties being a kind of transformation ap-
plied to xml data

The domain ontology defines also:

• AggregationRule concept describing the conditions when aggregation
should be triggered and what actions should be undertaken

4.1.1.XML derivation

To indicate value localization in xml document, element property should be
defined - a path, with elements separated by ‘/’ character, pointing to xml
element or xml attribute.

The XMLDerivation concept has different meaning depending on the type of
associated object. If associated with ontological class, it defines individual
identifier value (useful when individuals are to be named in a particular
convention), as presented in following example:

Virolab D3.3 A3 version 1.0 Page 41 of 51

http://www.virolab.org/onto/extension

<ext-ns:XMLDerivation rdf:ID=”ExperimentDerivation”>
 <ext-ns:element
 rdf:datatype=”http://www.w3.org/2001/XMLSchema#string”>
 experimentStarted/ACID/experiment/id
 </ext-ns:element>
</ext-ns:XMLDerivation>
<rdf:Description
rdf:about=”http://www.virolab.org/onto/exp-protos#Experiment”>
 <ext-ns:derivedFrom rdf:resource=”#ExperimentDerivation”/>
<rdf:Description>

All instantiated Experiment individuals have identifiers identical as ACID
experiment they refer to.

If associated with ontological property, the concept indicates the property value.
In following example – data type property beginning is extracted directly from
experimentStarted/time tag:

<ext-ns:XMLDerivation rdf:ID=”BeginningDerivation”>
 <ext-ns:element
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 experimentStarted/time
 </ext-ns:element>
</ext-ns:XMLDerivation>
<rdf:Description
rdf:about=”http://www.virolab.org/onto/exp-protos#beginning”>
 <ext-ns:derivedFrom rdf:resource=”#BeginningDerivation”/>
<rdf:Description>

4.1.2.Object properties

Most of the class derivation individuals should be associated with property
rootElement. Like in element property, its meaning depends on the object type
that the individual is related with. If associated with an ontological class, it
indicates the top-level xml element corresponding with this class (in most cases,
the parent of all elements containing this class properties). Such approach
addresses the situation when single xml document refers to many classes so
there is a need to localize documents fragments referring to given concepts. The
root element is used to establish how many instances should be created (note,
that if no rootElement is specified, there is an assumption that the root element
is the parent of all aggregated xml documents, therefore a single instance is
created be default).

Virolab D3.3 A3 version 1.0 Page 42 of 51

http://www.virolab.org/onto/exp-protos#beginning

If associated with an object property, rootElement indicates the root element of
individual to be bound by this property. The next example refers to two
aggregated xml document presented below:

<gridOperationInvoking>
 <inputParameter> … </inputParameter>
 <inputParameter> … </inputParameter>
</gridOperationInvoking>
<gridOperationInvoked>
 <outputParameter> … </outputParameter>
</gridOperationInvoked>

It should be indicated that GridOperationParameter concept is related with two
xml elements:

<ext-ns:XMLDerivation rdf:ID="ParameterDerivation">
 <ext-ns:rootElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoking/inputParameter
 </ext-ns:rootElement>
 <ext-ns:rootElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoked/outputParameter
 </ext-ns:rootElement>
</ext-ns:XMLDerivation>

The derivation of GridOperationInvocation individual properties inputParameter
and outputParameter (which have the same range, namely
GridOperationParameter) should indicate that the individual localization in xml
file depends on xml path:

<ext-ns:XMLDerivation rdf:ID="InputParameterDerivation">
 <ext-ns:rootElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoking/inputParameter
 </ext-ns:rootElement>
</ext-ns:XMLDerivation>
<ext-ns:XMLDerivation rdf:ID="OutputParameterDerivation">
 <ext-ns:rootElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoked/outputParameter

Virolab D3.3 A3 version 1.0 Page 43 of 51

 </ext-ns:rootElement>
</ext-ns:XMLDerivation>

In presented configuration, exactly three individuals of class
GridOperationParameter are created. Also, when instantiating
GridOperationInvocation class, one value of inputParameter and two values of
outputParameter property are associated, extracted from the xml elements in
arbitrary order.

4.1.3.Delegate derivation

In more complicated cases, a property cannot be directly associated with an xml
element, but is a form of transformation to be applied to xml primitives. In such
situation, an ontology extension author is expected to develop delegate java
classes providing desirable operations. The execution of operation is described
semantically by DelegateDerivation concept. This concept is related with
following properties examined by aggregator engine:

• delegateClass utilized class qualified name

• delegateMethod utilized method name

• delegateParameter method parameter

Method parameter concept is associated with following properties:

• parameterElement the xml element where the parameter value is placed

• parameterOrder the parameter order number in method signature

• parameterType qualified parameter Java type name, necessary to
identify the method due to methods overloading issue

In the next example, the created ontology contains experimentDuration
property while xml events contain only beginning time and end time data. The
ontology author develops simple delegate class (note, that all non-primitive
return types are converted to String type):

public class AggregationHelper {
public static Long computeDuration(Long beginning, Long end)

{
return end – beginning;

}
}

The invocation of presented method is semantically described below:

<ext-ns:DelegateParameter rdf:ID="BeginningParameter">
 <ext-ns:parameterOrder

Virolab D3.3 A3 version 1.0 Page 44 of 51

 rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>
 1
 </ext-ns:parameterOrder>
 <ext-ns:parameterType
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 java.lang.Long
 </ext-ns:parameterType>
 <ext-ns:parameterElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 experimentStarted/time
 </ext-ns:parameterElement>
</ext-ns:DelegateParameter>
<ext-ns:DelegateParameter rdf:ID="EndParameter">
 <ext-ns:parameterOrder
 rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>
 2
 </ext-ns:parameterOrder>
 <ext-ns:parameterType
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 java.lang.Long
 <ext-ns:parameterType>
 <ext-ns:parameterElement
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 experimentFinished/time
 </ext-ns:parameterElement>
</ext-ns:DelegateParameter>
<ext-ns:DelegateDerivation rdf:ID="DurationDerivation">
 <ext-ns:delegateClass
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 pl.cyfronet.virolab.mring.aggregator.AggregationHelper
 </ext-ns:delegateClass>
 <ext-ns:delegateMethod
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 computeDuration
 </ext-ns:delegateMethod>
 <ext-ns:delegateParameter>
 #BeginningParameter
 </ext-ns:delegateParameter>

Virolab D3.3 A3 version 1.0 Page 45 of 51

 <ext-ns:delegateParameter>
 #EndParameter
 </ext-ns:delegateParameter>
</ext-ns:DelegateDerivation>

4.1.4.Aggregation rules

The aggregation rule concept is related with following properties:

• eventType events that should be aggregated (aggregation rule is
satisfied if all events types are gathered)

• instantiatedClass the ontological class that should be instantiated

• acidCoherency the ACID coherency level (if set to 1, only experiment
identifier is checked, if set to 2, also task identifier is checked, etc.), the
aggregation rule is applied only to the xml events with corresponding ACID

In following example, the aggregation of events gridOperationInvoking,
gridOperationInvoked (referring to the same invocation) results in
GridOperationInvocation and GridOperationParameter classes instantiations:

<ext-ns:AggregationRule rdf:ID="GridOperationInvocationAggrega-
tion">
 <ext-ns:eventType
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoking
 </ext-ns:eventType>
 <ext-ns:eventType
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 gridOperationInvoked
 </ext-ns:eventType>
 <ext-ns:instantiatedClass
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 http://www.virolab.org/onto/exp-protos#GridOperationInvocation
 </ext-ns:instantiatedClass>
 <ext-ns:instantiatedClass
 datatype=”http://www.w3.org/2001/XMLSchema#string”>
 http://www.virolab.org/onto/exp-protos#GridOperationParameter
 </ext-ns:instantiatedClass>
 <ext-ns:ACIDCoherency
 rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>
 2

Virolab D3.3 A3 version 1.0 Page 46 of 51

http://www.virolab.org/onto/exp-protos#GridOperationInvocation
http://www.w3.org/2001/XMLSchema#string

 </ext-ns:ACIDCoherency>
</ext-ns:AggregationRule>

4.2. AUTHORS CONTACT INFORMATION

Authors list: Jakub Wach, Michał Pelczar, Bartosz Baliś.

Developer team contact: Jakub Wach [wach.kuba@gmail.com].

Virolab D3.3 A3 version 1.0 Page 47 of 51

ABBREVIATIONS

Fix the list [Tomasz Gubala]

Abbreviation/Term Explanation
AAS Aminoacid Sequence

API Application Programmer’s Interface

ARID Application Run Identifier

CCA Common Component Architecture

DAC Data Access Client

DB Database

DEISA Distributed European Infrastructure for Supercomputing

DGE Data Gathering Engine

DO Domain Ontology

DRAM Drug Resistance Associated Mutations

DRE Data Retrieval Engine

DRS Drug Ranking System

DS Distributed Storage

DSS Decision Support System

EGEE Enabling Grids for e-Science in Europe

EPL Experiment Planning Language

FLOWR For-Let-Where-Order by-Return

GOb Grid Object Class

GObI Grid Object Instance

GObID Grid Object Identifier

GObImpl Grid Object Implementation

GOp Grid Operation

GOI Grid Operation Invoker

GrAppO Grid Application Optimizer

GRR Grid Resources Registry

GT Globus Toolkit

GUI Graphical User Interface

HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

JMX Java Management Extensions

JSR Java Specification Request

JVMTI Java Virtual Machine Tool Interface

Virolab D3.3 A3 version 1.0 Page 48 of 51

Abbreviation/Term Explanation
LCG LHC Computing Grid

LHC Large Hadron Collider

LOB Large Object

MQL Meta Query Language

NS Nucleotide Sequence

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture – Data Access
Integration

OGSA-DQP Open Grid Services Architecture – Distributed Query
Processing

OO Object-Oriented

OR Object-Relational

OWL Web Ontology Language

PDP Policy Decision Point

PROToS Provenance Tracking System

RAD Rapid Application Development

RBAC Role-Based Access Content

RDF Resource Description Framework

RDQL Resource Description Framework Data Query Language

RMI Remote Method Invocation

RPC Remote Procedure Call

SN Storage Node

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SSN Storage Super Node

SSO Single Sign-On

SVN Subversion

TLS Transport Level Security

UML Unified Modeling Language

URI United Resource Identifier

UTF8 8-bit Unicode Transformation Format

VL Virtual Laboratory

VM Virtual Machine

VO Virtual Organization

VPN Virtual Private Network

WP Work Package

WS Web Service

Virolab D3.3 A3 version 1.0 Page 49 of 51

Abbreviation/Term Explanation
WS-I Web Services Integration

WSDL Web Services Definition Language

WSRF Web Services Resource Framework

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Virolab D3.3 A3 version 1.0 Page 50 of 51

REFERENCES
[AXIS] The Apache Axis project, a Java platform for creating

and deploying Web Services applications,
http://ws.apache.org/axis/

[DPIR] Example design Patterns in Ruby on
http://www.rubygarden.org/

[GRAPPO-API] GridSpace Application Optimizer API documents,
http://virolab.cyfronet.pl/~asia/grappo/apidocs/

[GT4] Globus Toolkit 4.0, http://globus.org

[HIBERNATE] Hibernate Relational Persistence for Java and .NET,
www.hibernate.org

[JAVA] Sun Corporation, Java Programming Language,
http://java.sun.com

[JETTY] Jetty Web Server, http://jetty.mortbay.com/

[JRUBY] JRuby – Java powered Ruby implementation,
http://jruby.codehaus.org

[LOG4J] Apache logging library
http://logging.apache.org/log4j/docs/index.html

[OPT-THESIS] Joanna Kocot, Iwona Ryszka: Optimization of Grid
Application Execution Master of Science Thesis
supervised by Marian Bubak; AGH University of Science
and Technology, June 2007, Krakow, Poland,
http://virolab.cyfronet.pl/~asia/msc/MScThesis_OptGri
dAppExecution.pdf

[PR] Dave Thomas, Chad Fowler and Andy Hunt:
Programming Ruby - The Pragmatic Programmer's
Guide, Second Edition, The Pragmatic Programmers,
2004

[RUBY] Ruby language, http://www.ruby-lang.org

[START_EXT_GRR] Start extending Grid Resources Registry tutorial
http://virolab.cyfronet.pl/trac/vlruntime/wiki/StartExte
ndingGRR

[SVN] Subversion, version control system,
http://subversion.tigris.org/

[SVNKIT] SVN Kit, pure Java Subversion implementation
http://svnkit.com/

[TOMCAT] Apache Tomcat http://tomcat.apache.org

[WTS] Pieter Libin, Bart De Deckere, Joris Van
Santvoort: Wts: a stateful web service infrastructure,
http://wts.sf.net/

Virolab D3.3 A3 version 1.0 Page 51 of 51

http://wts.sf.net/
http://tomcat.apache.org/
http://svnkit.com/
http://subversion.tigris.org/
http://virolab.cyfronet.pl/trac/vlruntime/wiki/StartExtendingGRR
http://virolab.cyfronet.pl/trac/vlruntime/wiki/StartExtendingGRR
http://www.ruby-lang.org/
http://virolab.cyfronet.pl/~asia/msc/MScThesis_OptGridAppExecution.pdf
http://virolab.cyfronet.pl/~asia/msc/MScThesis_OptGridAppExecution.pdf
http://jruby.codehaus.org/
http://jetty.mortbay.com/
http://java.sun.com/
http://www.hibernate.org/
http://globus.org/
http://virolab.cyfronet.pl/~asia/grappo/apidocs/
http://www.rubygarden.org/ruby/page/show/ExampleDesignPatternsInRuby
http://www.rubygarden.org/ruby/page/show/ExampleDesignPatternsInRuby
http://ws.apache.org/axis/

	Copyright Notice
	1.Introduction
	1.1.Target Audience
	1.2.More Information

	2.GridSpace Engine Developer’s Manual
	2.1.Architecture of the GridSpace Engine
	
	2.1.1.GSEngine API
	2.1.2.GSEngine Core
	2.1.3.GSEngine Application Repository Client API
	2.1.4.GSEngine SVN Application Repository Client

	2.2.Altering the Functionality of the GridSpace Engine
	2.2.1.Adding New Java or Ruby Library Dependencies of the Engine
	2.2.2.Adding Support for New Remote Computation Technologies
	2.2.3.Adding New Types of Data Sources through DAC Connectors
	2.2.4.Adding New Experiment Execution Optimization Techniques

	2.3.Access to the Monitoring and Provenance Events System
	2.4.Source Code Access, Bug Reporting and Authors Contact Information

	3.GridSpace Servers and Portlets Administration Manual
	3.1.Grid Resources Registry Installation Manual
	3.2.Web Resources Registry Browser Installation Manual
	3.3.Domain Ontology Store Installation Manual
	3.3.1.Downloading tools
	3.3.2.Installation and running
	3.3.3.Setting up MySQL back-end database
	3.3.4.Loading ontology models

	3.4.Experiment Management Interface Installation Manual
	3.5.Source Code Access, Bug Reporting and Authors Contact Information

	4.PROToS developers’ manuals
	4.1.Semantic Event Aggregator Configuration Manual
	4.1.1.XML derivation
	4.1.2.Object properties
	4.1.3.Delegate derivation
	4.1.4.Aggregation rules

	4.2.Authors Contact Information

	Abbreviations
	References

