
Deliverable D3.3
Session Manager, runtime system and data
layer: installation, integration and usage;
description of interfaces to WP2, WP4 and

WP5 – report and demonstration.

Project Start: 01-03-2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-027446

Website: http://www.virolab.org

Due-Date: 31-08-2007

Delivery: 12-09-2007

Lead Partner: CYFRONET

Coordinator UvA, Prof. Dr P.M.A. Sloot

Dissemination Level: Public

Status: Final

Approved: Quality Board, Steering
Committee

Version: 1.1

Log of Document

Version Date Changes Summary Authors
0.1 16/08/2007 Initial draft version Tomasz Gubala

0.2 20/08/2007 Some sections filled in
(conclusions pending)

Piotr Nowakowski

0.3 21/08/2007 Input to 2.1.4 section Tomasz Bartyński
0.4 21/08/2007 Input to 4.2 section Marek Kasztelnik
0.5 21/08/2007 Input to section 2.1.6 Joanna Kocot

0.6 22/08/2007
Input to sections 1 and 2.1.1,
figs labels, references added

Tomasz Gubala, Eryk Ciepiela

0.7 22/08/2007
Section 2.1.5 extended and
references added; summary
section added.

Piotr Nowakowski

0.8 22/08/2007 DAS section added Matthias Assel

0.9 23/08/2007
Input to sections 2.3.2 and
2.3.3

Michał Pelczar

0.10 23/08/2007 Adding geno2drs demo Tomasz Gubala

0.11 27/08/2007 Structure changes, figure fix,
some minor fixes

Tomasz Gubala, Marian
Bubak

0.12 27/08/2007 Overview and runtime
sections changed

Tomasz Gubala

0.13 27/08/2007
Executive summary
overhauled; other minor
corrections

Piotr Nowakowski

0.14 29/08/2007
QUaTRO demo added, some
minor corrections

Tomasz Gubala, Bartosz Balis

0.15 30/08/2007 Corrections
Wlodzimierz Funika, Tomasz
Gubala

0.16 30/08/2007
Minor corrections in section
4.2

Marek Kasztelnik

0.17 30/08/2007 Executive summary updated Piotr Nowakowski
0.19 02/09/2007 Further additions, corrections Joanna Kocot, Eryk Ciepiela

0.20 03/09/2007
Experiment script example
and description added

Tomasz Gubala

0.21 04/09/2007
Minor corrections in sections
5.2 and 5.3

Michał Pelczar

0.22 04/09/2007
Added data mining with Weka
experiment

Maciej Malawski

0.23 04/09/2007 Added PROToS content Kuba Wach

0.24 05/09/2007 Changes to DAS section and
overall reviewing

Matthias Assel, Aenne Löhden

0.25 06/09/2007 PROToS executive summary
added. Other minor changes.

Bartosz Balis

0.26 07/09/2007 Refinement of section 3.4 Tomasz Bartyński
0.27 07/09/2007 Added QUaTRO section Kuba Wach

0.28 07/09/2007 MLA demo added, corrections Tomasz Gubala, Alfredo
Tirado

0.29 07/09/2007 Updated Weka experiment Maciej Malawski

0.30 08/09/2007
Minor corrections in sections
3.2.4 and 6, adding of section
6.2.3

Michał Pelczar

0.31 08/09/2007 Minor corrections in section
4.2

Marek Kasztelnik

ViroLab Deliverable 3.3 - version 1.1 Page 2 of 87

Version Date Changes Summary Authors
0.32 09/09/2007 Minor changes Eryk Ciepiela

0.33 10/09/2007
Added experiment planning
demo and some other
changes

Tomasz Gubala, Marian
Bubak

0.34 10/09/2007 DAC description revised;
other minor changes

Piotr Nowakowski

1.0 11/09/2007 Proofreading Piotr Nowakowski

1.1 12/09/2007
Changed manuals list, few
acronyms added

Tomasz Gubala, Marian
Bubak

ViroLab Deliverable 3.3 - version 1.1 Page 3 of 87

Table of Contents
1. EXECUTIVE SUMMARY...8

2. OVERVIEW OF THE FIRST VIRTUAL LABORATORY PROTOTYPE.. 10

3. DEMONSTRATION OF THE VIRTUAL LABORATORY PROTOTYPE..15

3.1. VIROLOGICAL ANALYSIS OF HIV VIRUS GENOTYPE... 15
3.1.1. Description of Experiment... 15
3.1.2. User Group...16
3.1.3. Execution Inside the Virtual Laboratory..16

3.2. QUERYING OVER PROVENANCE AND DATA... 21
3.2.1. Description...21
3.2.2. Intended user group... 22
3.2.3. Requirements..22
3.2.4. Execution Inside the Virtual Laboratory..22

3.3. ACQUIRING DRUG RESISTANCE INFORMATION REGARDING HIV VIRUS...25
3.3.1. Description...25
3.3.2. User Group...25
3.3.3. Requirements..26
3.3.4. Execution Process.. 26

3.4. DEMONSTRATION OF PLANNING OF AN EXPERIMENT.. 29
3.4.1. Description...29
3.4.2. User Group ..29
3.4.3. Setting up the work environment..29
3.4.4. Planning the data acquisition part...31
3.4.5. Sharing experiment with other developers...32
3.4.6. Planning the computation access part... 34
3.4.7. Releasing the experiment plan for users.. 36

3.5. DATA MINING FOR A CLASSIFICATION PATTERN... 38
3.5.1. Description...38
3.5.2. Intended user group... 39
3.5.3. Technical Perspective.. 39
3.5.4. Requirements..40
3.5.5. Detailed code explanation..40
3.5.6. Running the experiment..41

4. RUNTIME SYSTEM.. 44

4.1. GRIDSPACE ENGINE... 45
4.1.1. Implementation Description...48
4.1.2. Current Functionality...50
4.1.3. Planned Functionality..51

4.2. GRID RESOURCES REGISTRY.. 51
4.2.1. Implementation Description...51
4.2.2. Current Functionality...53
4.2.3. Planned Functionality..53
4.2.4. Deviations from the Design Document.. 54

4.3. DOMAIN ONTOLOGY STORE...54
4.3.1. Implementation Description...55
4.3.2. Current Functionality...56
4.3.3. Planned Functionality..56

4.4. GRID OPERATION INVOKER..57
4.4.1. Implementation Description...57
4.4.2. Current Functionality...58
4.4.3. Planned Functionality..58

4.5. GENERIC DATA ACCESS CLIENT...58
4.5.1. Implementation Description...59
4.5.2. Current Functionality...60

ViroLab Deliverable 3.3 - version 1.1 Page 4 of 87

4.5.3. Planned Functionality..60
4.5.4. Deviations from the Design Document.. 60

4.6. GRID APPLICATION OPTIMIZER...60
4.6.1. Implementation Description...61
4.6.2. Current Functionality...62
4.6.3. Planned Functionality..62
4.6.4. Deviations from the Design Document.. 63

5. DATA VIRTUALIZATION AND ACCESS.. 64

5.1. DATA ACCESS AND HANDLING...64
5.1.1. Implementation Description...65
5.1.2. Current Functionality...65
5.1.3. Planned Functionality..66

5.2. DATA RESOURCE DISCOVERY.. 66
5.2.1. Implementation Description...66
5.2.2. Current Functionality...66
5.2.3. Planned Functionality..66

5.3. SECURITY HANDLING (AUTHENTICATION, AUTHORIZATION AND CRYPTOGRAPHY)... 66
5.3.1. Implementation Description...67
5.3.2. Current Functionality...67
5.3.3. Planned Functionality..67
5.3.4. Deviations from the Design Document.. 67

5.4. NOTIFICATION, MESSAGING, MONITORING... 68
5.4.1. Implementation Description...68
5.4.2. Current Functionality...68
5.4.3. Planned Functionality..68

5.5. DATA STORAGE AND LABORATORY DATABASE...68
5.5.1. Implementation Description...68
5.5.2. Current Functionality...69
5.5.3. Planned Functionality..69

6. PROVENANCE TRACKING SYSTEM – PROTOS..70

6.1. PROTOS CORE.. 70
6.1.1. Implementation Description...70
6.1.2. Current Functionality...72
6.1.3. Planned Functionality..72

6.2. EVENT GENERATION TOOL.. 73
6.2.1. Implementation Description...73
6.2.2. Current Functionality...74
6.2.3. Planned Functionality..74

6.3. SEMANTIC EVENT AGGREGATOR...74
6.3.1. Implementation Description...75
6.3.2. Current Functionality...76
6.3.3. Planned Functionality..76

6.4. QUERY TRANSLATION TOOLS (QUATRO)... 77
6.4.1. Implementation Description...77
6.4.2. Current Functionality...77
6.4.3. Planned Functionality..78

7. LIST OF VIRTUAL LABORATORY MANUALS...79

8. SUMMARY..80

ViroLab Deliverable 3.3 - version 1.1 Page 5 of 87

List of Figures

FIGURE -1: DIFFERENT LAYERS OF VIROLAB VIRTUAL LABORATORY....................................... 10

FIGURE -2: VIROLAB VIRTUAL LABORATORY ARCHITECTURE DIAGRAM................................ 11

FIGURE -3: IMPLEMENTATION STATUS OF THE FIRST PROTOTYPE... 12

FIGURE -4: VIRTUAL LABORATORY IMPLEMENTATION TIMELINE (FROM D3.2)..................... 13

FIGURE -5: MAIN PICTURE OF “FROM GENOTYPE TO DRUG RESISTANCE” EXPERIMENT... 16

FIGURE -6: VIROLAB PORTAL LOGIN SCREEN...17

FIGURE -7: PORTAL LOGIN DIALOG EXAMPLE... 17

FIGURE -8: EXPERIMENT MANAGEMENT INTERFACE (EMI) MAIN VIEW....................................18

FIGURE -9: EXPERIMENT REPOSITORY PORTLET INSIDE EMI.. 18

FIGURE -10: EXPERIMENT CONTEXT PORTLET WITH EXPERIMENT DETAILS..........................19

FIGURE -11: EXPERIMENT EXECUTION ACKNOWLEDGEMENT MESSAGE..................................19

FIGURE -12: USER INPUT AND RESULT BROWSER PORTLET BEING IDLE....................................19

FIGURE -13: USER INPUT PORTLET REQUESTING USER INPUT..20

FIGURE -14: USER INPUT PORTLET RECEIVING USER INPUT... 20

FIGURE -15: USER INPUT PORTLET ACKNOWLEDGING INPUT.. 20

FIGURE -16: EXPERIMENT OUTPUT..21

FIGURE -17: MAIN DEMONSTRATION COMPONENTS...21

FIGURE -18: DATA QUERY: INITIAL CONCEPT, SELECTION..22

FIGURE -19: DATA QUERY: CONSTRUCTION (1)... 23

FIGURE -20: DATA QUERY: CONSTRUCTION (2)... 23

FIGURE -21: DATA QUERY: CONSTRUCTION (3)... 23

FIGURE -22: PROVENANCE QUERY: SELECTING INITIAL CONCEPT.. 24

FIGURE -23: PROVENANCE QUERY: CONSTRUCTION.. 24

FIGURE -24: MLA PORTLET SERVICE COMPOSITION.. 25

FIGURE -25: PORTLET SELECTION WITHIN THE VIROLAB APPLICATION PORTAL.................27

FIGURE -26: SELECTING A RULESET WITHIN THE MLA PORTLET... 27

FIGURE -27: SPECIFYING A MUTATION-TYPE WITHIN THE MLA PORTLET. 28

ViroLab Deliverable 3.3 - version 1.1 Page 6 of 87

FIGURE -28: SUBMITTING A MUTATION LIST TO THE DRS.. 28

FIGURE -29: RETRIEVING THE NEW RANKING RESULTS FROM THE DRS....................................29

FIGURE -30: VIROLAB EPE WELCOME SCREEN... 30

FIGURE -31: THE NEW EXPERIMENT WIZARD..31

FIGURE -32: SHARE EXPERIMENT MENU OPTION...33

FIGURE -33: SELECT RESOURCES DIALOG.. 34

FIGURE -34: STARTING THE IMPORT EXPERIMENT WIZARD...35

FIGURE -35: STARTING THE RELEASE EXPERIMENT WIZARD...37

FIGURE -36: CHOOSING RELEASE VERSION..38

FIGURE -37: DATA MINING USING WEKA... 39

FIGURE -38: EXPERIMENT EXECUTION MECHANISM WITHIN THE VIRTUAL LABORATORY
RUNTIME..44

FIGURE -39. EXPLICIT SCRIPT EVALUATION REQUEST AND APPLICATION CODE
PROVISIONING SCENARIO IT INDUCES.. 47

FIGURE -40. LOCAL FILE SCRIPT EVALUATION REQUEST TYPE AND THE APPLICATION
CODE PROVISIONING SCENARIO IT INDUCES..47

FIGURE -41: REPOSITORY STAGED SCRIPT EVALUATION REQUEST TYPE AND THE
APPLICATION CODE PROVISIONING SCENARIO IT INDUCES...48

FIGURE -42: MAIN COMPONENTS AND INTERFACES OF GSENGINE...49

FIGURE -43: CLASS DIAGRAM OF SUPPORTED TYPES OF EVALUATION REQUEST.................. 50

FIGURE -44: GRID RESOURCES REGISTRY DECOMPOSITION .. 52

FIGURE -45: DOMAIN ONTOLOGY STORE DECOMPOSITION...55

FIGURE -46: GRID OPERATION INVOKER DECOMPOSITION DIAGRAM AND ITS EXTERNAL
DEPENDENCIES..57

FIGURE -47: HANDLE CREATION AND QUERY PROCESS INSIDE DAC.. 59

FIGURE -48: GRID APPLICATION OPTIMIZER DECOMPOSITION DIAGRAM – CURRENTLY
IMPLEMENTED GRAPPO MAIN COMPONENTS, CONNECTED TO OTHER RUNTIME
MODULES: GOI AND GRR... 62

FIGURE -492: DAS USE CASE OF A TYPICAL DATA ACCESS REQUEST AND OGSA-DAI
INTERACTIONS.. 65

FIGURE -50: THE DECOMPOSITION DIAGRAM OF THE SEMANTIC EVENT AGGREGATOR....75

ViroLab Deliverable 3.3 - version 1.1 Page 7 of 87

1.Executive Summary

This document constitutes the description of the first prototype of ViroLab Virtual
Laboratory software, developed after 18 months of the project duration and
based on the design exemplified in the specification deliverable [D3.2]. A website
featuring the properties and capabilities of this Virtual Laboratory can be found at
http://virolab.cyfronet.pl/.

It describes the overall architecture of the ViroLab Virtual Laboratory prototype
and provides an overview of all prototypes of individual functional components of
the VL system. More detailed descriptions of all prototype components are
included in user and developer manuals, available as appendices to this
document and comprising the integral part of this deliverable.

As indicated, the prototype of the Virtual Laboratory incorporates some of the
planned functionality of its constituent components. This functionality enables it
to be applied to executing real-life experiments from the virology domain. More
specifically, the prototype has been successfully demonstrated in the following
areas:

• Experiment executing on the example of the From virus genotype to drug
resistance interpretation process,

• Querying the historical and provenance information about virtual
laboratory experiments using the PROToS provenance tracking system and
its user interface,

• Assisting a clinical virologist with HIV therapy advice of the Drug
Resistance System (based on the Retrogram set of rules), presented
through its user interface MLA,

• Simple data mining and classifying, demonstrating possible usage of Weka
[WEKA] from virtual laboratory.

Further information regarding the execution and processing of the selected
demonstrative use cases can be found in subsequent sections of this document
(particularly in section 3). More specifically, the GSEngine module is discussed,
along with a number of components which together constitute the Virtual
Laboratory – such as the Data Access Services, the Grid Resource Registry and
the Experiment Management Interface. Furthermore, a section is devoted to the
Experiment Planning Environment as well as to the PROToS provenance tracking
system.

The main body of the deliverable is structured as follows:

• Section 2 presents a general overview of the ViroLab Virtual Laboratory
and its architecture. This section is not intended as an in-depth description
of VL components but rather as a brief summary, preceding subsections
devoted to VL functionality elements.

• Section 3 presents how the Virtual Laboratory prototype can be applied to
running ViroLab applications from several problem domains, and outlines
the expected results.

• Section 4 describes the status of development of each Virtual Laboratory
component, according to the architecture presented in D3.2 and other
relevant documents.

• Section 5 presents data virtualization and access tools.

ViroLab Deliverable 3.3 - version 1.1 Page 8 of 87

http://virolab.cyfronet.pl/

• Section 6 is devoted to the Provenance Tracking System (PROToS) and its
functionality.

• Section 7 presents the list of manuals which should be treated as
appendices to this deliverable.

• Section 8 contains closing remarks.

ViroLab Deliverable 3.3 - version 1.1 Page 9 of 87

2.Overview of the First Virtual Laboratory
Prototype

This document describes the first prototype of the ViroLab Virtual Laboratory
based on the design document enclosed in deliverable [D3.2]. The
implementation technology range follows the analysis of the state of the art
documents [D2.1] and [D3.1]. Virtual laboratory development will continue until
month 30 of the project (August 2008).

Figure -1: Different layers of ViroLab Virtual Laboratory.

Figure -1 shows in a conceptual way the various layers that constitute the virtual
laboratory. While this layered cake type of visualization is rather abstract and the
real architecture behind is far more complex, it shows the separation of levels
well. In the upper part we have a set of users (with two classes introduced lately
and another one explained later on). The users perform their tasks using a set of
user tools that are grouped in the interfaces part: there are dedicated tools for
each group. The centerpiece of the architecture, the unified runtime system, is
the part that allows these various users and their tools to understand one
another. What is more, this runtime layer server as a bridge to resources
dispersed in the virtual laboratory: both data sources and computational
services. Finally, these services run on physical equipment that are at their
disposal (the last layer). There are multiple solution here that are supported by
our virtual laboratory - among others it supports also large Grid computing
testbeds (currently an adapter for the EGEE testbed through the LCG software is
being added and we also plan to initiate work on potential addition of support for
DEISA resources).

As one may see in Figure -1, the virtual laboratory serves as a natural point of
integration of various tools, modules, protocols and interfaces into a single
virtual space, where various types of users are able to (collaboratively, if they so
choose) perform their tasks.

ViroLab Deliverable 3.3 - version 1.1 Page 10 of 87

Figure -2 presents the modules of the ViroLab Virtual Laboratory – the architecture
diagram was proposed in the design document and proved valid throughout the
initial implementation stage. For completeness’ sake, the diagram also contains
some modules from Workpackage 2 (for a more detailed description of WP2
architecture see [D2.2]).

Laboratory
Database
(for storing
experiment
results, read

and write
access)

Experiment
Repository

(contains saved
experiment plans)

Unified
Data

Sources
(mainly

read-only
access to
secured
data)

Presentation (T 2.3)
Includes Portal and Experiment Planning
Environment (both include Collaboration tools UIs)

Session Manager
Runtime (T 3.1)

Data Access
(T 3.3)

Grid Object
InstanceM

id
dl

ew
ar

e
(T

 2
.2

)

Sp
ec

if
ic

 T
ec

hn
ol

og
y

In
te

rf
ac

e
(T

 2
.2

)

G
ri

d
O

bj
ec

t
M

an
ag

em
en

t
G

ri
d

O
pe

ra
ti

on
In

vo
ca

ti
on

Inter
action

Execution
events

Domain Ontology Store (T 3.1)
(taxonomies of concepts

related to the modelled domain)

Execution
monitoring
information

Co
lla

bo
ra

ti
on

To
ol

s
(T

 3
.2

)

Grid Resources
Registry (T 3.1)

(with description of
Grid Objects, operations

and instances)

Experiment
execution G

O
I +

 G
rA

pp
O

:
Co

m
pu

ta
ti

on
 A

cc
es

s

D
A

C:
 D

at
a

A
cc

es
s

Cl
ie

nt

Runtime Library

Ex
pe

ri
m

en
t

sa
ve

/l
oa

d

Search

Resources state

Grid Object
information

Search

Experiment Session
(experiment state)

Da
ta

 r
et

ri
ev

al
 a

nd
 d

at
a

st
or

in
g

PROToS: Provenance
Tracking System (T 3.4)

Provenance
queries,
user
actions

Events regarding
provenance

M-Ring: Monitoring
Infrastructure

(T 2.2)

Repository
(for events and
intermed. data)

Sp
ec

if
ic

 d
at

a
so

ur
ce

 a
cc

es
s

En
cr

yp
ti

on
 a

nd
 d

ec
ry

pt
io

n

A
cc

es
s

A
ut

ho
ri

za
ti

on
(W

P2
 s

ec
ur

it
y)

Re
sp

on
se

Tr
an

sf
or

m
at

io
n

(t
o

VL
 s

ch
em

a)

Monitoring and
Messaging

Figure -2: ViroLab Virtual Laboratory architecture diagram.

The main decomposition of the work effort inside Workpackage 3 is as follows:

• runtime components (task 3.1),

• collaboration tools (task 3.2),

• data access infrastructure (task 3.3),

• provenance tracking system (task 3.4).

The virtual laboratory runtime components provide all the functional blocks
required for scientific in-silico experiments to run properly. The main execution
task is performed by the VL runtime (also called the GridSpace Engine) which,
apart from script interpretation capabilities, also provides access to distributed
middleware (Grid Operation Invoker GOI) and to unified data sources (Data
Access Client DAC). The interpreter is equipped with an execution optimization
module (Grid Application Optimizer GrAppO) which contacts the registry server
(Grid Resources Registry GRR) to find best matches for remote computation
elements required by the experiment being executed. As the amount of available
resources grows, the ontological taxonomies of the virology domain (stored
inside the Domain Ontology Store DOS) help the experiment developer to find
useful resources for a specific experiment. The exact description of the current
implementation of this module of the laboratory is presented in Section 4.

The data access module (left-hand part in Figure -2) provides unified access to
dispersed sources of medical data required by scientific experiments and
applications. As the experiment developers expect the data to be in a uniform
format despite the multitude of sources, the dedicated data access protocols
together with the transformation module are responsible to provide a so-called

ViroLab Deliverable 3.3 - version 1.1 Page 11 of 87

virtual ViroLab database to the end-users. This ensures that all information is
visible as being stored inside one single data source while it is dynamically
queried from different institutions. The data encryption library and the
authentication and authorization modules are used to provide a completely
secure environment for the scientists and medical users to work in, also securing
the underlying data sources. The description of the current state of development
within the data access task is provided in section 5.

The PROvenance Tracking System (PROToS) is responsible for tracking, storage
and exposure of interfaces to query provenance data regarding the results of
experiments. PROToS collects events from other components of the environment,
mainly the GridSpace Engine and the runtime components of experiments. Those
events are aggregated and transformed into an ontology-based description of
experiment execution. The generic experiment ontology is the core ontology to
represent an experiment’s execution. In addition, concepts from other ontologies
– data ontology and application ontology – are associated with the experiment
ontology to enhance the semantic description. The ontology model is also a basis
to query the provenance data. Query Translation tOols (QUaTRO) have been
constructed to help construct complex queries over provenance, as well as data
repositories. A detailed description of this module is presented in Section 6.

Implementation of various modules of the prototype was performed in parallel by
the WP2 and WP3 teams, however thanks to the effort of the integration group
(working inside WP4) all of them were properly integrated since the early phases
of the project.

Laboratory
Database (T4.3)

not started yet

Experiment
Repository (T4.3)

mature stage

Unified
Data

Sources
(wp5)

first data
sources

integrated

Presentation (T 2.3)
Experiment Planning Environment – middle stage

ViroLab specific EPE plug-ins – early stage
ViroLab Portal – mature stage

ViroLab specific portlets – early stage

GridSpace Engine (T 3.1)
(Session manager and runtime)
Local execution – mature stage

Remote execution - not started yet
Experiment Repository client

- mature stage

Data Access (T 3.3)
Rule set access – mature stage

Encryption – mature stage
Authorization – early stage
Authentication – early stage

DA Server – middle stage
Sources monitoring

– not started yet
Grid Objects

first tools
integrated

Middleware (T 2.2)
Technology adapters

- middle stage
2 Middleware platforms

- mature stage
Other platforms
- not yet started

Domain Ontology Store (T 3.1)
Model store – mature stage

Models – early stage

Collaboration
Tools (T 3.2)

early stage

Grid Resources
Registry (T 3.1)

mature stage

VL-Runtime (T 3.1)
GOI – middle stage

GrAppO – early stage
DAC – middle stage

PROToS (T 3.4)
(provenance tracking system)

middle stage

M-Ring (T 2.2)
(monitoring infrastructure)

early stage

Figure -3: Implementation status of the first prototype.

Figure -3 provides an overview of the current state of development of individual
packages and the level of integration with their neighboring modules. One may
see that most of the parts are in at least early stages of implementation. The
modules that are of critical value for the system have received more focus and
are in middle or even mature implementation stages (this group includes local
execution of experiments, ViroLab Portal, tools for experiment developers, data
access infrastructure and some remote computation technologies). Some other

ViroLab Deliverable 3.3 - version 1.1 Page 12 of 87

areas are relatively less developed as the implementation teams decided to focus
on them at later stages of the project (collaboration tools, remote execution of
experiments, laboratory data store for experiment results, monitoring and
provenance tracking systems). The arrows in Figure -3 show which
communication channels are already implemented and used in the prototype
(although not necessarily in their final form).

The first prototype of the virtual laboratory is a coordinated release of several
packages and the following table summarizes which modules build the prototype
release. Those which are not standalone servers maintained by their
development teams could be downloaded from the Virtual Laboratory website
[VIROLAB-VL].

Module Function

GSEngine Executes experiments (runtime)

DAS Service to access medical data from distributed DBs

GRR Registry that publishes computational resources

DOS Store that provides domain taxonomies for searching

EMI Portlet to run experiments inside ViroLab Portal

PROToS Provenance tracking server and portlet for users

EPE IDE and plugins for experiment developers

MLA Portlet for drug resistance information queries

The following sections give more detailed descriptions of the development stage
of those virtual laboratory modules that are being developed within Workpackage
3.

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

Projected delivery of Virolab-0.1

Projected delivery of Virolab-0.2
and first project yearly review

Projected delivery of Virolab-0.5

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

D2.1, D3.1 (state of the art)

D3.2 (VL design)

D2.2 (VO pilot demo;
presentation arch.)

D2.3 (VO version 1
deployment and integr.)

D2.4 (VO validation,
final report and demo)

D3.3 (runtime, sess. mgr,
data layer - description of

interfaces and demo)

D3.4 (presentation,
provenance and

process templates)

D3.5 (VL validation, final
report and demo)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2006 2007 2008 2009

Projected delivery of Virolab-0.1

Projected delivery of Virolab-0.2
and first project yearly review

Projected delivery of Virolab-0.5

Figure -4: Virtual laboratory implementation timeline (from D3.2).

Figure -4 recalls the development timeline that was presented in Section 2.5 of the
design deliverable [D3.2]. As one can see, the implementation is in the middle of
the “Virolab-0.2” and “Virolab-0.5” milestones (see the D3.3 arrow in the lower
part of the diagram). The two main milestones that have already passed
(“ViroLab 0.1: Decision Support System” and “ViroLab 0.2: Genotype Analysis

ViroLab Deliverable 3.3 - version 1.1 Page 13 of 87

and Simple Experiment Development Support”) were successfully achieved. This
means that both the DSS for the drug resistance interpretation and the first
virology experiments are already available in the first prototype of the virtual
laboratory. While there are some deviations from the roadmap plan presented in
section 2 of D3.2 (for instance the development of the provenance tracking
system started in month 13 and the implementation of collaboration tools was
postponed until better user feedback and requirements could be acquired) there
are no visible indications of any critical changes needed in the design and
implementation timetable.

ViroLab Deliverable 3.3 - version 1.1 Page 14 of 87

3.Demonstration of the Virtual Laboratory
Prototype

The demonstrations below show different aspects of the first prototype of the
ViroLab Virtual Laboratory. In order to present a relatively wide range of
laboratory capabilities, the demonstrations are designed to cover different
functionalities of the system related to various types of potential users (from
virology researchers to clinical practice users). The following sections contain
demonstrations of:

• Executing an experiment regarding the From virus genotype to drug
resistance interpretation process,

• Querying the historical and provenance information about virtual
laboratory experiments using the PROToS provenance tracking system and
its user interface,

• Assisting a clinical virologist with HIV therapy advice of the Drug
Resistance System (based on the Retrogram set of rules), presented
through its user interface MLA,

• Planning a new experiment to be executed within the ViroLab Virtual
Laboratory,

• Simple data mining and classifying scenario, that demonstrating virtual
laboratory capabilities in the area of data sets analysis.

3.1.Virological Analysis of HIV Virus Genotype

3.1.1.Description of Experiment
The experiment described below follows the short procedure from the samples of
HIV virus nucleotide sequences (obtained from patient viral isolates) through
some analysis of those sequences up to the list of rules regarding the resistance
levels of those viruses to certain drugs.

The interpretation of HIV drug resistance into the susceptibility of the virus to
particular drugs requires some preparatory several steps. Some of these steps
have to be done manually. The preparatory measures involve:

• a blood sample should be taken from a patient (typically performed in a
clinic)

• isolation of genetic material from the virus (conducted in a laboratory)

• sequencing of genetic material from the virus (involving a manual se-
quence verification)

Following these steps one obtains a set of valid genetic material of virus mutants
and the information is stored in a database. This material is the input we need to
start with the next, in-silico part of the experiment. Figure -5 shows its steps.

ViroLab Deliverable 3.3 - version 1.1 Page 15 of 87

Figure -5: Main picture of “From Genotype to Drug Resistance” experiment.

In short the process runs like this (please follow the diagram in Figure -5):

• the nucleotide sequences of the HIV virus are obtained from a data
source through the integrated, uniform protocol of DAS,

• these sequences are subject to both alignment and virus subtype de-
tection,

• a very important outcome of the alignment step is the list of mutations a
particular virus mutant has in comparison to some well-known reference
sequences,

• these mutations are then uploaded to the drug resistance system,
which returns the virus-to-drug susceptibility values as the final effect.

3.1.2.User Group
The application is intended for users with different requirements for the software.
Generally, these users are either clinically or research-oriented. Clinically
oriented users will always be interested in the virus’ drug resistance and subtype,
but not necessarily in a detailed list of all mutations/substitutions. Conversely,
researchers are not necessarily interested in drug resistance but would like to get
the subtype and a list of all mutations/substitutions and nucleotide composition
per codon. Thus, the experiment is potentially useful for a wide spectrum of
users.

3.1.3.Execution Inside the Virtual Laboratory

User Login in the ViroLab Portal

The experiment starts with the ViroLab Portal. Since this document is not a
thorough Portal guide, we will go through the login sequence very quickly, not
much detailed. On the main ViroLab Portal page (https://virolab.gridwisetech.pl/)

ViroLab Deliverable 3.3 - version 1.1 Page 16 of 87

https://virolab.gridwisetech.pl/
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab

the user follows the Login link in the top right corner. Afterwards, the main login
screen appears (see Figure -6).

Figure -6: ViroLab Portal login screen.

If the user's home organization uses standard Shibboleth authentication
protocols, the user will be faced with a typical web login window like the one in
Figure -7. This may, however, look quite different if the security infrastructure at
the user's home organization uses different means of authentication.

Figure -7: Portal login dialog example.

Whatever the login procedure, the user provides credentials.

Loading an experiment into the workspace

Following successful login, the user opens the Experiment Management Interface
(EMI) tab inside the Portal - the one that contains the Experiment Management
Interface portlets (the tab may also appear right away as the default one). The
following text is not a guide on how to use EMI but only a step-by-step
experiment execution scenario (for the guide itself please refer to [D3.3USR]).

ViroLab Deliverable 3.3 - version 1.1 Page 17 of 87

Figure -8: Experiment Management Interface (EMI) main view.

Figure -8 presents a screenshot of the overall EMI area. Please note that in your
case the appearance could vary due to a different visual theme, yet the controls
should look quite similar. In the left part you see the so-called Experiment
Browser that shows which experiments are currently released and which
versions are available inside the Experiment Repository (see also Figure -9).
In the current case, the experiment to execute is called Geno2drs and has two
releases from which the user chooses the later one (rc2).

Figure -9: Experiment Repository portlet inside EMI.

This is done by clicking on the version name (the rc2 label) in the Experiment
Browser window. The user has to wait a few seconds for the experiment files to
be fetched from the remote repository and then the right part of the display,
called Experiment Context awakes. The content of the window is presented in
Figure -10. It provides important, basic information (the upper Experiment
details part) about the experiment itself, including its authorship, the owner
rights and also a short description of the experiment. All these pieces of
information were provided by the developer of the experiment.

The experiment is now loaded and ready for execution.

Experiment execution

ViroLab Deliverable 3.3 - version 1.1 Page 18 of 87

http://virolab.cyfronet.pl/trac/vlvl/wiki/ExperimentRepository

Figure -10: Experiment Context portlet with experiment details.

The lower part of the Experiment Browser context window (see again Figure
-10) features the Experiment execution part. Here, the user chooses exactly
which version of the experiment should be used (the previously clicked rc2
version is the default choice). It is enough to click on the Execute experiment
button to start the experiment. If everything goes smoothly, an acknowledgment
in form of an information message should appear right in the top part of the
Experiment Context portlet (see Figure -11).

Figure -11: Experiment execution acknowledgement message.

The experiment, after some startup activity, addresses the user again in order to
gather required input. Precisely, the user needs to choose which protein (or
region of the sequence) is of interest for him. Currently, it may either be
protease ("pro") or reverse transcriptase ("rt"). When such a need for user input
or decision arises, the User Input and Result Browser Portlet (which most of
the time, in its ideal state, looks like the one in Figure -12) displays an input
form.

Figure -12: User Input and Result Browser Portlet being idle.

A fresh input form and user-provided information are shown in Figure -13 and
Figure -14 respectively.

ViroLab Deliverable 3.3 - version 1.1 Page 19 of 87

Figure -13: User Input Portlet requesting user input.

Figure -14: User Input Portlet receiving user input.

After the user chooses that the region of interest will be the reverse
transcriptase, the choice is submitted to the pending experiment by pressing the
Send data button. If the data transmission was successful, a simple
acknowledgment information should appear in the window (see Figure -15).

Figure -15: User Input Portlet acknowledging input.

Experiment result

After waiting for a while (both the alignment and the subtyping algorithms take
some time to finish) the experiment finally returns its results to the user (see
Figure -16 for a cropping of the most interesting piece of result data). Among
others, it shows:

• what nucleotide sequence was the basis for processing,

• what mutations were detected in the interesting region of the sequence,

• what subtype was estimated for this particular virus mutant,

• and finally, what drugs were recommended by the decision support sys-
tems.

ViroLab Deliverable 3.3 - version 1.1 Page 20 of 87

Figure -16: Experiment output.

This step concludes the experiment. As one may check by going back to Figure
-5, all the stages of the From genotype to drug resistance interpretation process
were covered.

3.2.Querying over Provenance and Data

3.2.1.Description
The purpose of this demonstration is to present how users can query repositories
of data (biological/virological/medical databases) and provenance (experiment
execution traces). The provenance system and data model are also indirectly
presented. In this scenario, users such as medical doctors or researchers will use
Query Translation Tools to construct and submit queries to underlying
repositories of data and provenance. Query construction is user-oriented, thanks
to ontology models of experiments, data, and applications, which serve as inter-
lingua between users who are non-IT experts and tools.

Figure -17: Main demonstration components.

ViroLab Deliverable 3.3 - version 1.1 Page 21 of 87

3.2.2.Intended user group
The target user group includes non-IT experts (medical doctors, researchers)
who need to query repositories of data or provenance, e.g. to obtain results to
serve as input for a new experiment, or information on a previously executed
experiment.

3.2.3.Requirements
The following components are involved:

• QUery TRanslation Tools (QUaTRo), which provide a graphical user inter-
face to construct queries in an end-user oriented manner

• PROvenance Tracking System (PROToS), wherein provenance records are
stored and which provides interfaces to query provenance data

• Ontology models of experiments, data, and applications

• Additionally, Data Access Client (DAC), to query databases

3.2.4.Execution Inside the Virtual Laboratory
Query 1: Querying over medical concept

The first query concerns medical and virological databases. The query begins
with picking a starting concept which determines the domain of the query and,
ultimately, the repositories to be queried. Let us suppose the user wants to find
some HIV virus aminoacid sequences, which satisfy certain criteria. The query
should begin with the VirusAminoAcidSequence concept (Figure -18).

Figure -18: Data query: initial concept, selection.

Query 1: Selection of aminoacid sequence attributes

ViroLab Deliverable 3.3 - version 1.1 Page 22 of 87

When the initial concept has been selected, the QUaTRo form is dynamically
expanded to present all available relationships and related concepts of database
attributes. In the latter case, the database itself is dynamically contacted to
obtain a list of attributes as specified in the data model, and also the list of
actual attribute values that exist in the current database records. Figure -19,
Figure -20, and Figure -21 present the construction of the query. Note how
logical and operators are used to impose multiple constraints on a given entity.

Figure -19: Data query: construction (1).

Figure -20: Data query: construction (2).

Figure -21: Data query: construction (3).

ViroLab Deliverable 3.3 - version 1.1 Page 23 of 87

Query 2: Querying over provenance concept

Figure -22: Provenance query: selecting initial concept.

The second query will select some data from the provenance repository. We shall
retrieve some experiments with specific characteristics. Let us begin with the
Experiment concept (Figure -22).

Query 2: Selection of experiment properties and related concepts

Similarly to the data query, the query form is dynamically expanded upon
construction. The full query is shown in Figure -23.

Figure -23: Provenance query: construction.

ViroLab Deliverable 3.3 - version 1.1 Page 24 of 87

3.3.Acquiring Drug Resistance Information
Regarding HIV Virus

3.3.1.Description
This experiment allows a first version of portlet-based access to our ranking
system. In this demo a user can use the Mutation List Analysis (MLA) portlet
application to interact with a number of ranking systems, via the ViroLab
application portal.

A user uses the MLA portlet to apply a procedure that uses samples of HIV virus
nucleotide sequences and submits them to the ViroLab decision ranking system
(DRS) that interfaces to a list of rulesets. These rulesets are applied to analyze
the specific sequence resistance levels to certain drugs. The MLA portlet
therefore serves as an interface between the back-end DRS by using a DRS
portlet container that invokes the MLA service, which hosts the MLA portlet
within the ViroLab application portal, as seen in Figure -24. The MLA portlet
serves as the interface which gets invoked by the DRS back-end system in order
for the user to interact with a number of ranking rulesets.

Figure -24: MLA portlet service composition.

The rulesets, mutation types and list of mutations can be entered into the user
interface using text boxes and pull down menus implemented with Javascript,
within the GridSphere portlet framework.

3.3.2.User Group
The intended user group for this demo is the medical user, which is one of the
main users of the ViroLab Virtual Laboratory. These are individuals with a higher

ViroLab Deliverable 3.3 - version 1.1 Page 25 of 87

level of education in biomedical fields (e.g., virology), and may have limited
knowledge/experience with state of the art information and communication
technologies.

3.3.3.Requirements
This demo is based on and hosted by the GridSphere technology framework, so
in order to access it the user needs to have:

• a machine capable of running a graphical web browser (e.g., Pentium II
or better with at least 256 MB of RAM),

• a network connection,

• a graphical browser such as Mozilla Firefox, Safari or MS Explorer, with
JavaScript support and Java 1.4.2 or better.

3.3.4.Execution Process
This demo provides access to the basic capabilities of the new ViroLab ranking
system, the DRS. The user first needs to access the Virolab application portal, in
the standard way. After the user logs into the application portal:

1. The user select the DRS portlet tab, which contains the MLA portlet.

2. Once at the MLA portlet, the user selects a ruleset from the first drop-
down list.

3. The user selects a mutation type from the second drop-down list.

4. The user types each mutation to analyse, upper case, separated by one or
more spaces, and submits the mutation list for ranking.

5. Finally, the user scrolls down to get the new rankings.

Loading the DRS Portal

The medical user accesses the ViroLab application portal, using a web browser,
at https://virolab.gridwisetech.pl/ via the ViroLab Shibboleth framework. The
user selects the decision ranking service (DRS) tab, which brings up the mutation
list analysis portlet (Figure -25). Initially, the user finds as default values
Retrogram selected as ranking system to use, and Reverse Transcriptase as
mutation type.

ViroLab Deliverable 3.3 - version 1.1 Page 26 of 87

https://virolab.gridwisetech.pl/

Figure -25: Portlet selection within the ViroLab application portal.

Selecting Ruleset and Mutation Type

The user selects a ruleset from the first drop-down list such as Retrogram, Rega,
or Stanford (Figure -26), and the mutation type such as Reverse Transcriptase or
Protease (Figure -27).

Figure -26: Selecting a ruleset within the MLA portlet.

ViroLab Deliverable 3.3 - version 1.1 Page 27 of 87

Figure -27: Specifying a mutation-type within the MLA portlet.

Entering and submitting a mutation and retrieving the results

The user can now enter a mutation list to analyse, upper case and separated by
one or more spaces, and submits the mutation list for ranking (Figure -28). The
user can now scroll down to retrieve the new ranking results, which may take a
few seconds to come up (Figure -29).

Figure -28: Submitting a mutation list to the DRS.

ViroLab Deliverable 3.3 - version 1.1 Page 28 of 87

Figure -29: Retrieving the new ranking results from the DRS.

This version of the MLA portlet demo supports access to various rulesets via the
DRS back-end system. As future work, the portlet will be fully integrated with the
standard ViroLab experiment planning and execution systems, and additional
functionalities will be added (e.g., simultaneous use of multiple rulesets for a
single mutation list).

3.4.Demonstration of Planning of an Experiment

3.4.1.Description
This demonstration follows the procedure of experiment planning. For the sake of
clearness we will use the same "From Genotype to Drug Resistance" experiment
that is described in Section 3.1 - please check it to learn about the experiment
concept. The experiment presented here is very similar, just slightly reduced in
order to keep the demonstration brief and clear.

3.4.2.User Group
This demonstration is intended for the persons that would like to develop new
experiments. The steps shown below are carried out using the main experiment
developers’ tool – the Experiment Planning Environment.

3.4.3.Setting up the work environment
In the course of this demonstration we will use the main tools of the experiment
developer: Experiment Planning Environment (EPE) along with the set of
ViroLab-dedicated plug-ins. Below are some links that you might want to check
before further pursuing the demonstration description:

ViroLab Deliverable 3.3 - version 1.1 Page 29 of 87

• EPE installation manual,

• EPE using manual,

• EPE plug-ins installation manual,

• Resources Browser using manual,

• Ontology Browser using manual.

All these resources are to be found in the Developer’s Manual appendix to this
document [D3.3DEV] and (in the updated, on-line version) on [VIROLAB-VL].
The demonstration approaches the planning scenario in a collaborative way and
shows an example of two different people developing the same experiment. The
same procedure also works in a single-developer version.

Starting EPE

Let us assume the developer starts work by downloading and installing the
ViroLab EPE. In order to start it, he clicks the "virolabEPE" executable, which is
placed in the main ViroLabEPE directory. After choosing the workspace location
and waiting few moments, the ViroLab EPE Welcome screen appers (Figure -30),
from where one is able to start planning new experiments.

Figure -30: ViroLab EPE Welcome screen.

Creating a new project

In order to create a new experiment, the developer selects the "Click here to
create a new experiment" icon from the Welcome screen (one may also do this
from the workbench with the File menu). The New Experiment wizard should

ViroLab Deliverable 3.3 - version 1.1 Page 30 of 87

appear (Figure -31). There are some information (e.g. experiment name and
author contact info) to be provided to complete the wizard.

Figure -31: The New experiment wizard.

After finishing the wizard, a new experiment project, with a proper structure,
should be created in the workspace (or any location chosen when completing the
wizard). The developer is now ready to start creating the
FromGenotype2DrugResistance experiment plan.

3.4.4.Planning the data acquisition part
In this part of experiment plan development we will use the API of the Data
Access Client (see [D3.3VLDEV] for details). The planning is started with removal
of the generated puts "Hello from Experiment!" - we start with just the require
lines to include all necessary runtime libraries for the data access module:

require 'cyfronet/gridspace/dac/DACConnectClass.rb'

The main source of medical data that is available inside the ViroLab Virtual
Laboratory is the Data Access Service and we will use it through the DAC
connector class. In its current version, DAC requires from the developer to
provide the exact data service endpoint location in order to be able to contact it:

ViroLab Deliverable 3.3 - version 1.1 Page 31 of 87

das = DACConnector.new("das",
 "angelina.hlrs.de:8080/wsrf/services/DataResourceService"
,
 "","","")

Apart from the type of data source we'd like to access (das) and the address
URL, the rest of parameters are left empty (the access to this particular resource
in the virtual laboratory is unrestricted). Having obtained the handle
(represented by the das local variable) the developer is able to form a data
query:

nt_seqs = das.executeQuery(
 "select nt_sequ from nt_sequences where
 patientID=#{patientID.to_s};")

As one may clearly see it is a fairly standard SQL query of the select type. From
the table that stores nucleotide sequences detected in viral isolates the query
retrieves the ones that were detected in the body of a particular patient (since
the data is anonymized one rather uses the artificial patient's ID instead of
his/her name). As the query was parametrized with the patient's ID, the
developer specifies its value through a local variable patientID. Later on, one
may add the user request call to allow the experiment user type in the
interesting patient's ID during the execution process - in order to learn how to do
that, please consult an example of this kind of call provided later.

The entire data acquisition part of our script looks like this:

require 'cyfronet/gridspace/dac/DACConnectClass.rb'
patientID = 1
das = DACConnector.new("das",
 "angelina.hlrs.de:8080/wsrf/services/DataResourceService"
,
 "","","")
nt_seqs = das.executeQuery(
 "select nt_sequ from nt_sequences where
 patientID=#{patientID.to_s};")

3.4.5.Sharing experiment with other developers
In some situations (e.g. when two or more developers are working
simultaneously on the same experiment) the experiment sharing capability is
useful. This is a very common situation that occurs in real life. To solve this
problem ViroLab has created the Experiment Repository, which allows several
(potentially widely separated) developers to collaborate. The ViroLab EPE
provides some wizards to make communication with the Experiment Repository
as easy as possible.

In order to share an experiment, the developer selects the "Share experiment..."
popup menu (mouse right click) option (Figure -32).

ViroLab Deliverable 3.3 - version 1.1 Page 32 of 87

Figure -32: Share experiment menu option.

The wizard is a very simple one, requiring just a minimum effort to complete it.

1. In the first step one provides some basic information about the repository:
location of the repository(the default location is already on the list), the
access login and the password.

2. Secondly, there is an opportunity to choose the label, which will describe
the experiment in the Experiment Repository.

3. Lastly, the developer may type the comment which will be attached to this
experiment project revision.

After these steps the dialog appears which allows to decide which resource
should be sent to the repository (Figure -33).

ViroLab Deliverable 3.3 - version 1.1 Page 33 of 87

Figure -33: Select resources dialog.

If sharing operation completes successfully, the developer will be able to see that
a small decorator has been attached to all resources that have been placed in the
repository (this indicated that they are shared resources from now on).

3.4.6.Planning the computation access part

Importing a shared experiment.

If someone had shared an experiment using the Experiment Repository, another
person can easily import it by using the Import an experiment from Experiment
Repository wizard. To start this wizard one selects the proper icon from the EPE
toolbar (Figure -34).

ViroLab Deliverable 3.3 - version 1.1 Page 34 of 87

Figure -34: Starting the import experiment wizard.

The following points describe the steps of the experiment import procedure:

1. The first step is about providing information about the repository and it is
similar to the one from the "Sharing experiment" wizard.

2. If everything went correctly one should be able to see a tree structure
from which the tool downloads the experiment, that the developer is inter-
ested in.

3. The last two steps are optional and they regard: providing the experiment
name, which will be used in the local workspace and choosing the location
(and the working set) where the experiment will be placed.

After clicking the Finish button the selected experiment will be placed in the
chosen location. After either sharing or importing an experiment, the developer
is able to perform dedicated operations like: committing changes and releasing
new versions of the experiment.

Planning the remote processing part.

In order to find the mutations of the virus that are related to drug resistance,
their nucleotide sequences need to be aligned. There is a tool that is able to
perform that task (published by the Rega Institute from Leuven). In order to
acquire a handle to the tool the developer uses the computation access module
from the runtime library (switched on with another require):

ViroLab Deliverable 3.3 - version 1.1 Page 35 of 87

require 'cyfronet/gridspace/goi/core/g_obj'
alignment = GObj.create('regadb.RegaAlignment')

As our virus genotype data source returns the sequences with no FASTA header
and the alignment tool requires one, we do this simple procedure to add a
dummy header:

nt_seqs.each_index {|ind|
 nt_seqs[ind] = ">name\n"+nt_seqs.flatten[ind]
}

After that the sequences are prepared for the alignment process, that takes place
in a designated region of the sequence (that is, for a particular protein) -
denoted by the not-yet initialized region variable. The result is a record of
information from which we get just the mutations list:

result = alignment.align(nt_seqs[0], region.upcase)
mutations = result.split(',').last.chop

One final step ahead: the mutations are sent to the Drug Ranging System that,
based on these mutations and the decision rule set we choose, shows the set of
advice regarding the future treatment of the patient. For this example we use the
Retrogram set of drug resistance rules (the region indication is also important
here).

drs = GObj.create('org.virolab.DrugRankingSystem')
resistance = drs.drs('retrogram', region, 100, mutations)
puts resistance

The experiment plan is almost finished at this point. One final feature will be to
parametrize the experiment so its user may perform it for chosen region
(protein). For this we require another module from the runtime library, called
Data Requester:

require 'DataRequester'

This module allows us in a single, simple procedure call relay a user input
request to the Portal side of the experiment execution. In a few words - it allows
as to ask the user to put in some data:

region = DataRequester.new.getData(
 "Region (lowercase: \"rt\" or \"pro\")")

We are ready to release a version of our experiment plan now.

3.4.7.Releasing the experiment plan for users

ViroLab Deliverable 3.3 - version 1.1 Page 36 of 87

When the experiment developers decide that the experiment is stable enough,
they can use EPE's built-in functionality to prepare and publish a new experiment
release. This makes the experiment visible through the ViroLab Portal for the
experiment users (e.g. scientists and clinicians).

In order to release a new version of the experiment, it should have already been
placed in the Experiment Repository. To start the release wizard select the Team
-> New release... option from the popup menu (right mouse button click on the
experiment name) (Figure -35).

Figure -35: Starting the release experiment wizard.

The only information one is obliged to provide is the experiment release version
(Figure -36). Optionally the developer can attach a release comment which may
contain information about the release (e.g. changes added since the previous
release).

ViroLab Deliverable 3.3 - version 1.1 Page 37 of 87

Figure -36: Choosing release version.

And that’s all there is to it – the new release of the experiment has been created.
Experiment users are now able to execute it using the EMI portlet in the ViroLab
Portal. Please consult the experiment execution demonstration in Section 3.1 to
see how this experiment plan works when executed.

3.5.Data Mining for a Classification Pattern

3.5.1.Description
This sample “toy” experiment demonstrates how we can perform data analysis
using Weka [WEKA] data mining toolkit. The experiment has the following steps:

1. A sample dataset is retrieved from a database. In this experiment we use
the ‘contact_lenses' dataset, which is one of sample datasets from Weka
distribution. It contains the patient data such as age, spectacle
prescription, astigmatism and tear production rate, accompanied by
recommended contact lenses type.

2. The contact lenses dataset is split between a training set and a testing set.
3. A classifier is trained and it produces rules, which can be used for

classification. In this example we use the simplest "One Rule" classifier,
which actually relies only on a rule based on one attribute.

4. A trained classifier is used to predict the data from the testing dataset.
5. The results of prediction can be compared to the actual data from the

testing set. The prediction quality of the classifier can be determined in
this way.

A schematic data flow and order of operations is shown in Figure -37.

ViroLab Deliverable 3.3 - version 1.1 Page 38 of 87

Figure -37: Data mining using Weka.

3.5.2.Intended user group
The data analysis experiment intends to show the usage of the Virtual Laboratory
for scientists such as virologists. It demonstrates how an experiment plan has to
be prepared by an experiment developer (using Ruby). It is also shown how the
experiment can be executed locally using the command-line gsengine runtime.
Such a scenario is mostly dedicated to advanced users of the virtual laboratory,
who intend to create, modify, and "experiment" with various experiments in their
scientific work. The demonstration also shows the possible usage of different
middleware technologies, such as Web Services and MOCCA components.

3.5.3.Technical Perspective
This test experiment presents ability to invoke in one script both Web Services
and MOCCA components. The main task of this script is to predict the contact
lenses type using patient data stored in a database and check the quality of
predicted information.

Realization

1. The "WekaGem" Web Service (stateless) and "OneRuleClassifier" (stateful)
are available on a remote server

2. "WekaGem" has 3 methods:
• loadDataFromDatabase: imports data from database and convert into

ARFF [WEKA] format
• splitData: splits data into training and testing data
• compare: compares testing data with predicted data.

3. "OneRuleClassifier" has 2 methods:
• train: trains this stateful component
• classify: tries to predict result using information gained during training

process.
4. Both "WekaGem" and "OneRuleClassifier" are registered inside the Grid

Resources Registry (GRR)
5. Grid Operations Invoker is able to instantiate these gems (as Grid Object

Instance) and invoke their operations

ViroLab Deliverable 3.3 - version 1.1 Page 39 of 87

http://virolab.cyfronet.pl/trac/exampleExperiments/attachment/wiki/exex/Weka/weka-demo.png

3.5.4.Requirements
Running this example experiment requires the following items to be available:

1. gsengine binary distribution installed on user's machine
2. VLSampleExperiments package downloaded and extracted to a local disk
3. ViroLab infrastructure set up and running (GRR, H2O kernel for MOCCA

components, Weka deployed as gems, database with sample data). It is
assumed that all these items are made available for experiment users and
developers by virtual laboratory administrators

3.5.5.Detailed code explanation
The entire code is written in the Ruby programming language and is executed
with the JRuby interpreter.
Highlights:

require 'cyfronet/gridspace/goi/core/g_obj'

This includes the main part of the Grid Operation Invoker (GOI) to be used later
on.

logger = JLogger.getLogger('goi.wekaexperiment')
logger.info('Start of weka experiment !!')

JLogger is an specific GridSpace class that is responsible for logging specific
application events/messages. Inspiration for this class is log4j framework (for
more information see [LOG4J]

QUERY = 'select * from contact_lenses limit 100;'
DATABASE = "jdbc:mysql://127.0.0.1/test"
USER = 'testuser'
PASSWORD = ''

retriever = GObj.create('cyfronet.gridspace.gem.weka.WekaGem')
A = retriever.loadDataFromDatabase(DATABASE, QUERY, USER, PASSWORD)
puts 'Data retrieved from DB :' + A

In this part of the experiment "WekaGem" is created and data from a database is
loaded to variable A. At the end information about loaded data is logged.

B = retriever.splitData(A, 50)
trainA = B.trainingData
testA = B.testingData

After the data is loaded it has then to be split into training and testing data. To
do that the second "WekaGem" method is used. 50% of data will be used as
testing data other 50% as training data. The result is assigned to trainA and
testA variables.

ViroLab Deliverable 3.3 - version 1.1 Page 40 of 87

Classifier = GObj.create('cyfronet.gridspace.gem.weka.OneRuleClas-
sifier')

We have loaded and split data. Next task of this experiment is to create classifier
that is able to predict the contact lenses type. OneRuleClassifier is instantiated.
It is a stateful MOCCA component.

attributeName = 'contact_lenses'
classifier.train(trainA, attributeName)

This component has to be trained before it is able to predict any information.

prediction = classifier.classify(testA)
puts 'Predicted data:' + prediction

We can now predict the necessary information. Of course, important information
can be logged.

classificationPercentage = retriever.compare(testA, prediction, at-
tributeName)

puts 'Prediction quality:' + classificationPercentage
puts 'End of weka experiment !!'

The last important item is to check how good this prediction was. WekaGem Web
Services are used here. The result of the prediction is printed.

3.5.6.Running the experiment
In this example we run the experiment from the command-line. This requires
that a user has GSEngine installed, as described in GSEngineUserManual. Weka
experiment is the one included in the VLSampleExperiments package.

In order to invoke the experiment, type:

virolab:~/sample-experiments$ gsengine weka_experiment_lenses.rb

First, we get some initial messages:

No evaluation request specified - using default.evaluation.re-
quest.xml...
544 [INFO] goi.wekaexperiment - Start of weka experiment !!

Subsequently, the initial dataset is printed out:

Data retrieved from DB:@relation contact_lenses

@attribute age {young,pre-presbyopic,presbyopic}
@attribute spectacle_prescrip {myope,hypermetrope}

ViroLab Deliverable 3.3 - version 1.1 Page 41 of 87

@attribute astigmatism {no,yes}
@attribute tear_prod_rate {reduced,normal}
@attribute contact_lenses {none,soft,hard}

@data
young,myope,no,reduced,none
young,myope,no,normal,soft
young,myope,yes,reduced,none
young,myope,yes,normal,hard
...

Later we can see the training ...

Data for trainning: @relation contact_lenses
...
@data
young,myope,no,reduced,none
young,myope,no,normal,soft
young,myope,yes,reduced,none
...

... and testing dataset:

Testing data: @relation contact_lenses
...
@data
pre-presbyopic,hypermetrope,no,reduced,none
pre-presbyopic,hypermetrope,no,normal,soft
pre-presbyopic,hypermetrope,yes,reduced,none
pre-presbyopic,hypermetrope,yes,normal,none
...

Creating a MOCCA component prints out some debug information:

Connecting to kernel: http.tunnel://virolab.cyf-
kr.edu.pl:7781:7799/

After the classifier is trained, a prediction result on a testing dataset is printed
out:

Predicted data:@relation contact_lenses
...
@data
pre-presbyopic,hypermetrope,no,reduced,none
pre-presbyopic,hypermetrope,no,normal,soft
pre-presbyopic,hypermetrope,yes,reduced,none

ViroLab Deliverable 3.3 - version 1.1 Page 42 of 87

pre-presbyopic,hypermetrope,yes,normal,soft
...

It can be seen that the prediction quality of One Rule classifier is far from
perfect, as it is the simplest possible classifier. This is confirmed by the result of
the compare method:

Prediction quality: 0.6666667

Finally, some closing messages are produced by the experiment. It can be seen
that the experiment does not return any value.

End of weka experiment !!
[EvaluationCallback] result returned:

This completes the data analysis experiment.

This experiment demonstrates, that a scientist can easily modify the experiment
plan by editing the experiment script and run it from command-line. It is also
possible to use Interactive Ruby (IRB) to conduct experiments interactively.

ViroLab Deliverable 3.3 - version 1.1 Page 43 of 87

4.Runtime System
The main purpose of this module is to provide all the functionality of the virtual
laboratory runtime system in the moment of experiment script execution. The
developer expects the runtime layer of the laboratory to include all the APIs and
implementations required for activities such as accessing the registry to gather
important data on available services, obtaining appropriate experiment input
data, or running a remote computation. The listed functionality is inside a library
and it is loaded into the interpreter whenever an execution of a ViroLab
experiment plan is demanded. For more detailed description of the runtime
system purposes and designed functionality please check Section 6.1 in [D3.2].

The following sections list the current state of development of various parts of
the runtime. However, to see how they are integrated together, let us consider
the experiment execution mechanism.

Figure -38: Experiment execution mechanism within the virtual laboratory runtime.

Figure -38 decomposes the entire mechanism of experiment execution into some
notable parts. First of all, the virtual laboratory runtime component (GSEngine)
needs the experiment plan - depending on the execution mode it is either
provided directly or is downloaded by the GridSpace Engine (a part of the
runtime) from the Experiment Repository. Now, the most important part of the
plan is the experiment script that models the procedure flow - this script is now
being interpreted by a built-in experiment script interpreter (that is a JRuby
[JRUBY] interpreter).

To better describe the notion of an experiment script, let us use an example from
the clinical virology domain. There are the three basic blocks of the experiment:
acquiring input data, processing the data, and obtaining the result. In this

ViroLab Deliverable 3.3 - version 1.1 Page 44 of 87

http://virolab.cyfronet.pl/trac/vlvl/wiki/ExperimentRepository
http://virolab.cyfronet.pl/trac/vlvl/wiki/GridSpace
http://virolab.cyfronet.pl/trac/vlvl/wiki/ExperimentUse
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab

particular case the script provides virus-to-drug resistance information to the
user.

patientID = 6

rdb = DACConnector.new("mysql","virolab.cyfronet.pl","test","testuser","")
mutations = rdb.executeQuery
 ("select mutations from nt_sequence where patient_ii=#{patientID.to_s};")

drs = GObj.create('org.virolab.DrugRankingSystem')
resistance = drs.rank("protease", mutations)

puts resistance

The three main steps are as follows:

• Get the mutations of viruses for a certain patient (lines 2-3)

• Ask for a drug resistance ranking based on the retrieved mutations (lines
4-5)

• Present the result to the user (line 6)

Mutations data is retrieved from a remote relational MySQL database with a
specified query. Here, the developer uses the Generic Data Access Client (DAC)
(see Section 4.5 for more in-depth explanations) module to acquire a proper
database handle (rdb). With this handle, the query can be issued and the result
is stored in a local mutations variable. Later on, the developer uses the Grid
Operation Invoker (GOI) (see Section 4.4) API to create a local stub of a remote
service called DrugRankingSystem - this stub is represented as a local variable
drs. This is in turn used to remotely invoke the ranking operation, which returns
proper information related to virus-to-drug resistance. Finally, this information is
presented to the user with the simple terminal printout operation puts.

During the script interpretation phase, there are two specifically interesting
stages: remote data access and remote computation access. These two are very
important virtual laboratory’s operations and supported by the Generic Data
Access Client (the data access part) and the Grid Operations Invoker, Grid
Resources Registry, and Grid Application Optimizer (the computation access
part). All these modules are presented in Figure -38 and their current
implementation state is described in detail below.

4.1.GridSpace Engine
GridSpace Engine (in short GSEngine) is the core part of the Virtual Laboratory
where experiments are submitted, evaluated, and where the status of evaluation
is monitored and stored, and which finally provides an experiment executor with
intermediary experiment results as well as the ultimate ones. GridSpace Engine
provides the runtime environment within which a Ruby-based GScript [D3.2]
[RUBY] is evaluated and some parts of Virtual Laboratory such as Grid Operation
Invoker (GOI) (Section 4.4), Generic Data Access Client (DAC) (Section 4.5)
operate. It is accessed by the Portal’s Experiment Management Interface (EMI)
and the Eclipse-based IDE of Experiment Planning Environment (EPE).

ViroLab Deliverable 3.3 - version 1.1 Page 45 of 87

In general, GSEngine is a service that accepts evaluation requests, which carry
all information needed in order to evaluate a GScript application:

• Configuration information related to GridSpace environment e.g. URLs to
GridSpace services such as Grid Resources Registry (Section 4.2) or Grid
Application Optimizer (Section 4.6) as well as policies to apply, credentials
etc.

• Either application code or all indispensable information in order to locate
and get the application code.

GSEngine clients can asynchronously submit such evaluation requests and trace
the evaluation in the notification mode thanks to an evaluation callback
mechanism. Since a GSEngine client launches the evaluation asynchronously and
in non-blocking manner it has to provide an evaluation callback object, that
handles notifications related to the submitted evaluation.

Not only evaluation notifications are sent back to the client, since GSEngine
supports interactive mode of data input. Each time the application waits for input
from the application executor, the data input callback is sent back to the client,
which returns with the data input request satisfied. That is handled by the
evaluation callback object as well. GSEngine provides a dedicated library for
interactive user data input requests, which is available for application developers.

There are several available evaluation request types which vary in the way how
they provide an application code. Each type has a corresponding scenario for
providing application code:

• Explicit Script Evaluation Request – the code of the script or scripts to
evaluate is carried along with evaluation request (see: Figure -39)

• Local File Script Evaluation Request – the script or scripts to evaluate are
stored in the local file system, and the evaluation request specifies paths
to them (see: Figure -40)

• Repository Staged Script Evaluation Request – the script or scripts to
evaluate are stored in the Application Repository, and the evaluation
request specifies the repository URL, repository credentials, and the scripts
location in the repository (see: Figure -41)

In order to support the Repository Staged Script Evaluation Request type, the
GSEngine is enabled to incorporate a Source Code Management (SCM) system
client. Thanks to its open architecture any SCM system may be supported that
implements GSEngine App Repo API, which will be discussed in details further.
The primary implementation of the GSEngine Application Repository API, which
comes along with the GSEngine distribution is the implementation based on
Subversion (SVN) [SVN] SCM system.

ViroLab Deliverable 3.3 - version 1.1 Page 46 of 87

GSEngine

GSEngine Client

Application

[1] Application Evaluation Request Submission

[2a] Application Evaluation
[3] Evaluation Completion

[2b] Data Streaming

Application
Evaluation
Response

Application
Evaluation
Request

Figure -39. Explicit Script Evaluation Request and application code provisioning scenario it
induces.

GSEngine

GSEngine Client

[1] Application Submission

Application

[2] Application Evaluation Request Submission

[3] Application Resolving

[4a] Application Evaluation
[5] Evaluation Completion

[4b] Data Streaming

Application
Evaluation
Response

ApplicationApplication
Evaluation
Request

File System

Figure -40. Local File Script Evaluation Request type and the application code provisioning
scenario it induces.

ViroLab Deliverable 3.3 - version 1.1 Page 47 of 87

Application Repository

GSEngine

GSEngine Client

[1] Application Submission

Application

[2] Application Evaluation Request Submission

[3] Application Resolving

[4a] Application Evaluation
[5] Evaluation Completion

[4b] Data Streaming

Application
Evaluation
Response

ApplicationApplication
Evaluation
Request

Figure -41: Repository Staged Script Evaluation Request type and the application code
provisioning scenario it induces.

GSEngine may be used in two ways:

• by a dedicated command-line tool – gsengine

• via Java APIs

Considering GSEngine from the perspective of the other Virtual Laboratory
modules incorporated in the Runtime Environment such as GOI and DAC, the
GSEngine provides an application evaluation context containing configuration
information as well as application-specific information. Moreover, GSEngine takes
a significant part in the experiment monitoring performed by the monitoring
system since it traces and collects monitoring data relevant for experiment
execution. For that reason, all Virtual Laboratory modules consider GSEngine as
the monitoring event logging system and feed it with monitoring events.

4.1.1.Implementation Description
GridSpace Engine implementation involves several tightly-coupled components.

The internal components (those developed in the scope of GridSpace Engine
effort) are GSEngine Core that implements GSEngine API and uses GSEngine
SVN App Repo that, in turn, implements GSEngine App Repo API. GSEngine
Core provides GridSpace Engine core functionality, while GSEngine SVN App
Repo is an extension to the core with the support of the Application Repository.
Subversion (SVN) [SVN] as the source code management (SCM) system fits well
into the idea of the Application Repository since it enables versioning and
collaboration by default. The interfaces and implementing components are

ViroLab Deliverable 3.3 - version 1.1 Page 48 of 87

decoupled in order to enable the usage of other implementations, e.g. those of
the Application Repository.

The aforementioned components use external libraries such as JRuby 1.0 and
SVNKit 1.1.2. Having in mind that GScript is actually a Ruby language with
external libraries provided, JRuby [JRUBY] is used as a Ruby [RUBY] language
implementation written in Java that allows integration and cooperation between
Java code and Ruby code. SVNKit [SVNKIT] is used as a client of the SVN-based
implementation of the Application Repository. The dependencies between all
these internal as well as external components of GridSpace Engine are depicted
in Figure -42.

id Component Model

GSEngine Core

GSEngine SVN App Repo

GSEngine App Repo

GSEngine API

JRuby

SVNKit

«realize»

«realize»

Figure -42: Main components and interfaces of GSEngine.

GridSpace Engine incorporates the Virolab-specific libraries of GOI and DAC by
including them in the JRuby interpreter classpath, assuming that they are placed
in the directory pointed by a GS_HOME environment variable. Moreover, Virolab-
specific libraries are provided with a GridSpace Engine Application Context that
contains all the parameters required by the libraries and that is passed by
GridSpace Engine as Ruby constants to the JRuby interpreter runtime.

For the monitoring purpose a dedicated Ruby library for event logging is
designed that will be used by GOI and DAC. Moreover, the GScript developers
will be equipped with a library for handling data inputs.

The GridSpace Engine shall provide its clients realizations of
InterpreterFacade interface for embedded evaluation (carried out in the
same Java Virtual Machine) as well as for evaluation performed in the remote
service. At the current stage only the EmbeddedInterpreter realization is
available.

However, for the present, GSEngine supports above discussed set of evaluation
requests types, this set is open to expand in the future by providing an
appropriate evaluation request subclass and the corresponding evaluation
request support subclass following the design pattern shown in Figure -43.

ViroLab Deliverable 3.3 - version 1.1 Page 49 of 87

cd evaluation requests

ExplicitScriptEvaluationRequestSupport

LocalFileScriptEvaluationRequestSupport

RepositoryStagedScriptEvaluationRequestSupport

evalreq::
EvaluationRequest

evalreq::
ExplicitScriptEvaluationRequest

evalreq::
LocalFileScriptEvaluationRequest

evalreq::
RepositoryStagedScriptEvaluationRequest

«interface»
EvaluationRequestSupport

Component Model::
GSEngine SVN App Repo

GSEngine App Repo

+evaluationRequest

+evaluationRequest

+evaluationRequest

«realize»

Figure -43: Class diagram of supported types of evaluation request.

4.1.2.Current Functionality
At the current stage of development, the GridSpace Engine contains the following
features:

Available realizations of Interpreter Façade:

• Embedded Interpreter that is embedded in the caller’s Java Virtual
Machine

Supported evaluation request types:

• Explicit Script Evaluation Request

• Local File Script Evaluation Request

• Repository Staged Script Evaluation Request

Other features:

• Command-line toolkit for the Embedded Interpreter:

o gsengine tool for submission of evaluation requests

o gsquery tool for performing queries via Generic Data Access Client

• Support for SVN-based Application Repository

• Foundation for a data input library

ViroLab Deliverable 3.3 - version 1.1 Page 50 of 87

• Foundation for a monitoring event logging library

4.1.3.Planned Functionality
New additions are planned for the GridSpace Engine module:

• GridSpace Engine Server: a remotely accessible service fulfilling GridSpace
Engine functionality that is accessed via a dedicated client realizing
Interpreter Façade interface

• Experiment Planning Environment (EPE) plugin for submission of
evaluation requests and experiment run monitoring

• Robust data input library – a library based on a declarative XML-based
language to specify the user interface of data input forms featured with a
wide range of widgets. Supporting data input library by EMI, EPE and
GSEngine command line tool.

• Full implementation of the monitoring event logging library – adjustment
of the monitoring event logging library with emerging monitoring and
provenance systems.

4.2.Grid Resources Registry
A problem of the existing grid solutions is the complexity of creating grid
applications. Consequently, the developer has to have knowledge about many
complex technologies. To ease the process of creating complex distributed
applications, a Grid Resources Registry (GRR) is created. The main purpose of
this component is to present all available resources that can be used during the
creation and execution of an experiment scenario. What is more important, by
providing three layers of resources description [D3.2] scenario development is
much simpler and a ViroLab user may not worry about the technology of the
invoked service.

4.2.1.Implementation Description
The current architecture of the Grid Resources Registry is presented in Figure -44
. Components with light background (GRR Admin Plug-in, Resources Browser
Plug-in, Registry Service, Registry core and its subcomponents) are internal GRR
elements, the darker ones (Grid Operation Invoker, GrAppO Optimizer, Domain
Ontology Store and Monitoring System) are a part of GSEngine and monitoring
system.

ViroLab Deliverable 3.3 - version 1.1 Page 51 of 87

GRR Admin
Plug-in

Resources
Browser Plug-in

Registry Service
Grid

Operations
Invoker

GrAppO
Optimizer

Registry Core

Registry DB

OR mapping

Registry Notification
Listener

Monitoring
System

Domain
Ontology Store

Browse registry Administer registry

Get tech info

Delegate request

Notify about resource status Link to ontologies

Figure -44: Grid Resources Registry decomposition

The central element of the GRR is Registry Core that is responsible for
communication with the GRR user interface, GSEngine and monitoring systems.
It is implemented as a Java [JAVA] application that is deployed into the tomcat
[TOMCAT] container. The application was designed and is developed using the
MVC pattern, it uses mysql to store information about resources and the
hibernate framework [HIBERNATE] is used to provide object/relational
persistence (model). Using this mapping, GRR logic was implemented (controller)
and Xfire Web Service framework is used for communication with a GRR user
interface (Eclipse plug-in) and other external components (view). All these layers
are connected using Spring framework that uses the IoC (Inversion of Control)
pattern [IOC].

During the development stage, the user is able to browse resources available in
the ViroLab environment using the GRR user interface (Resources Browser).
Resources Browser uses Eclipse RCP [RCP] mechanisms to create views that can
be easily integrated into the EPE environment (see Section 3.2 of [D2.3] for
details). The component connects to Registry Core using a Web Service (Xfire
framework [XFIRE]) and is able to present three layers of resources description
(Grid Objects and their operations, Grid Object Implementation and Grid Object
Instances). The plug-in is integrated with the EPE script editor and allows to
easily insert a code line that creates a selected Grid Object. To find a proper Grid
Object the user can browse resources within the Resources Browser or the user
can use the highest level of resources abstraction – ontologies. To provide this
functionality, the Resources Browser is integrated with the Ontology Browser.
It is a two way integration, the user is able to search Grid Objects and their

ViroLab Deliverable 3.3 - version 1.1 Page 52 of 87

operations that fulfill ontology queries and, moreover, is able to find the ontology
meaning of a concrete operation.

For browsing resources outside the EPE, a web version of GRR is implemented. It
has limited plug-in functionality and allows only to browse information about
resources.

The second type of communication with Resources Core is when an experiment
script is executed by GSEngine. In case of invoking remote resources GrAppO
optimizer asks the registry about all implementations and instances of a concrete
grid object. After that Grid Operation Invoker receives a resource technical
description that allows to invoke different technologies. Both GrAppO and GOI
use the Web Services technology to communicate with GRR.

Integration with the monitoring system is planned to be implemented at the next
stage of the project.

4.2.2.Current Functionality
At the current stage of development, Grid Resources Registry provides the
following capabilities:

• Grid Resources Registry core:

– Enable to register and browse information about resources

– Support for Web Services, MOCCA components, EGEE (Job submission)
and WTC technologies

– Integration with Grid Operations Invoker and GrAppO optimizer

• Grid Resources Registry EPE plug-in:

– Capability to search and present information about resources to users

– Fully configurable using dedicated properties page and VO properties

– Integration with EPE script editor and Ontology Browser

• Web Resources Browser:

– Capable to browse all information about resources

– Configurable using VO properties

4.2.3.Planned Functionality
The following enhancements are planned:

• Grid Resources Registry core:

– Support for new technologies (WS-RF, DEISA)

– New functionalities that allow to manage information about resources in
a more comfortable way for the user

– Integration with the GEMINI monitoring system

– Additional information about resources that allows to browse and
search resources in a more user friendly way

• Resources Browser plug-in:

– GRR administration EPE plug-in (adding, removing, editing Grid Objects
their operations, Grid Object Implementations and Instances)

– Adding additional context items that allow to invoke administration
wizards from Resources Browser plug-in.

ViroLab Deliverable 3.3 - version 1.1 Page 53 of 87

– Further integration with EPE and Ontology Browser plug-in

• Web Resources Browser:

– New mechanisms that allow to log in to the Web Resources Browser
and customize GRRs that will be browsed

4.2.4.Deviations from the Design Document
The only change compared to the design deliverable is the technology that GRR
is implemented in. Instead of using Ruby frameworks like Ruby on Rails
[ROR] or Nitro [NITRO], Java [JAVA], hibernate [HIBERNATE], Xfire
[XFIRE], and Spring [SPRING] were chosen to implement this component. The
main reason for such a design change was that GRR communicates with many
additional components and some communication protocols (e.g. Ice, WSRF) are
not provided yet in Ruby.

4.3.Domain Ontology Store
The main purpose of the Domain Ontology Store (DOS) is to support a common
view of the modeled application domain, which is the viral diseases, for virtual
laboratory systems and users. This helps build a collaborative environment
whose functions are naturally distributed, with many parties contributing from
around the world, and which is meant to provide a non-trivial level of integration
between various activities performed by different users of the laboratory. For this
purpose the domain knowledge is modeled and represented with ontologies to
allow human users to easily identify common items of interest. Therefore, the
main responsibility of the Domain Ontology Store is to contain ontological models
in non-volatile storage and to provide their contents online for both read and
write access. The detailed design of DOS, together with use case analysis,
decomposition diagrams and sequence charts, which model a dynamic behavior,
is given in Section 6.1.3 of [D3.2].

ViroLab Deliverable 3.3 - version 1.1 Page 54 of 87

4.3.1.Implementation Description

Domain B Container

Domain A Container

Experiment
Planning

Environment

Ontology
Browser
Plugin

Domain A Data Model
<<artifact>>

manages manages

Domain A Object Model
<<artifact>>

Ontology Store Facade

PROToS
(Provenance

Tracking
System)

queries model content

Queries
models
content

Figure -45: Domain Ontology Store decomposition.

The current composition of the Domain Ontology Store is presented in Figure -45
. The components and artifacts depicted with the light background are internal
(that is, are provided by this module) while darker ones are external.

The central piece, which is the Ontology Store Façade, is currently
implemented with a server that is available online. The server provides an HTTP
endpoint where any suitable client may access the internals of the store. The
technology used here is provided by Sesame [SESAME] (a repository to store
and publish RDF Schema documents [RDFSCHEMA]) and is running inside an
instance of Java Virtual Machine [JAVA].

The models are developed as XML documents adherent to the Web Ontology
Language [OWL]. During the development, the Protégé [PROTÉGÉ] framework is
used that effectively shortens the design time and makes the relatively complex
process of devising ontology taxonomies much easier. All the models are strictly
versioned, one may always ask for the version number of a taxonomy inside the
store.

The container where the models are located and where the Façade is able to
browse them, is based on the OpenRDF triples [RDF] storing technology. While
the contents of taxonomies physically reside inside a MySQL [MYSQL] database,
the OpenRDF libraries are used for efficient to and from translations of OWL
documents, triples and final relational data model.

Finally, the developer of experiments is able to use the models through the
Ontology Browser Plugin that is deployed inside the Experiment Planning
Environment (EPE, see Section 3.2 of [D2.2] for a detailed description). The tool
uses the Eclipse [RCP] plugin development framework to provide the graphical
user interface and the Jung graph toolkit [JUNG] to visualize ontology models.
The client side of the Sesame library is used to contact the ontology store on-
line. Currently, the last release of the plugin (0.1.2) is not only integrated into
EPE but also cooperates with the Resource Browser Plugin for faster search of

ViroLab Deliverable 3.3 - version 1.1 Page 55 of 87

remote computations (Grid Objects) that are available to the experiment
developers.

The remaining part of the picture in Figure -45, the interface to the PROToS
provenance tracking system, is not present at the moment – currently PROToS
Core stores the required ontologies locally and does not query DOS online.
However, both tools use exactly the same ontology models, which are developed
cooperatively by both development teams (DOS and PROToS). Since both
subsystems use exactly the same ontology models the integration on the level of
common understanding of important concepts is achieved.

4.3.2.Current Functionality
At the current stage of development, Domain Ontology Store provides the
following features:

Ontology model container and its façade:

• Full querying capabilities (all needed types of queries are supported)

• Stability and scalability is satisfactory

• The HTTP-protocol façade fulfills all the requirements of DOS

Domain models:

• Virology data model is loaded in its first version

• Current model is based on the RegaDB data schema proposed by the
partners from KULeuven

• Development of concept-to-data mapping models for data sources is
started

Ontology Browser Plugin:

• Able to browse, reload, and change models

• Able to search Grid Objects using semantic meaning annotations
attached to these objects (input and output parameter search is
supported)

• Well integrated with both Experiment Planning Environment and the
Resources Browser Plugin

4.3.3.Planned Functionality
Further development includes:

Domain models:

• The final data model for ViroLab (when the common ViroLab data
schema is finally decided upon), based on current stub

• A complementary model of experiment activities and computations

• Mapping models for better ontology-to-database integration (needed
for planned data querying support)

Ontology Browser Plugin:

• Integration with the Data Access Client façade (when available) to
gather introspective information on data sources and help developers
query them using ontologies

ViroLab Deliverable 3.3 - version 1.1 Page 56 of 87

• Further integration with the Grid Resources Browser to support
searching for Grid Objects also using the future model of experiment
activities

4.4.Grid Operation Invoker
Grid Operation Invoker (later referred to as GOI) is responsible for providing a
uniform interface for invocation of operations in various communication
protocols. It enables high level Grid programming because it provides means to
access software deployed on remote computational resources, regardless of the
middleware technology, thus GOI facilitates creating complex experiments.

To fulfill its responsibilities, GOI should support all leading technologies, such as
Web Services, Grid components or jobs. It is necessary that GOI can be easily
extended in order to support emerging middleware technologies, therefore
technology adapters are loaded during runtime. This mechanism as well as the
full design of GOI, including use case analysis, module decomposition, sequence
diagrams, and external dependencies can be found in Section 6.1.5 of [D3.2].

4.4.1.Implementation Description
The architecture of Grid Operation Invoker is depicted in Figure -46. All
components within Grid Operation Invoker are provided by this module. Registry
and Optimizer are external to GOI.

Figure -46: Grid Operation Invoker decomposition diagram and its external dependencies.

GObj is an interface for creating objects providing functionality of remote
software. It queries the Optimizer (see Section 4.6) for the id of an optimal Grid
Object Instance of the class requested in the script (experiment) by the user.
Next, it queries the Registry (see Section 4.2) for technical information
describing the selected instance. Finally, the GObj loads an appropriate
technology adapter and delegates creating an GridObject to it. Both, the

ViroLab Deliverable 3.3 - version 1.1 Page 57 of 87

Registry Client and the Optimizer Client delegate queries from the GObj to
the Registry (Grid Resource Registry) and the Optimizer (Grid Application
Optimizer).

The Grid Operation Invoker is implemented in JRuby [JRUBY]. All components
and objects are Ruby [RUBY] classes but some of them import Java objects.

The GOI is designed and implemented in accordance with object-oriented
programming paradigm and uses Adaptor, Proxy and Abstract Factory design
patterns from [DPIR].

4.4.2.Current Functionality
At the current stage of development, Grid Operation Invoker enables invocation
of Grid Operations within the experiment on instances published in the following
technologies:

• Web Service

• MOCCA

• Jobs on EGEE

• WTS (see [WTS])

While creating a repesentative for a Grid Object Instance, user is offered three
options:

• Create a representative for an instance of a given Grid Object Class, which
is selected on the basis of provided functionality. User provide the name of
Grid Object Class and GrAppO finds the optimal instance.

• Create a representative for a concrete instance by providing the id of the
instance.

• Create a representative using low level API that requires technical
information.

Further information on GOI API can be found in Section 5.3 of [D3.3DEV].

4.4.3.Planned Functionality
Next efforts will be targeted at adding support for more middleware technologies.
This will be achieved by implementing adapters for WSRF, AHE and
UNICORE/DEISA (optional). In addition, GOI will provide event notifications, such
as informing about operation invocation or deployment of new MOCCA
component, to monitoring infrastructure. This data will be then used by PROToS
(see Section 6) and GrAppO (see Section 4.6). Finally, we are working on
integrating GOI with security infrastructure (see Section 5 of [D2.2]).

4.5.Generic Data Access Client
The purpose of the Generic Data Access Client (hereafter called the Data Access
Client or DAC for short) is to integrate data imported from various types of data
sources with the ViroLab Virtual Laboratory architecture and to present
experiment developers with a uniform way of accessing and manipulating data
elements in their experiment scripts.

ViroLab Deliverable 3.3 - version 1.1 Page 58 of 87

4.5.1.Implementation Description
As presented in [D3.2], the DAC – within the ViroLab context – operates with two
types of data sources:

• Standalone databases

• ViroLab hospital data sources, covered by the Data Access Service which is
under development at HLRS.

The implementation of DAC envisions that all data sources (be it external
databases or the DAS) should be accessible with a simple and generic interface
within the experiment scripts so that experiment developers do not need to
involve themselves with the technical aspects of communicating with actual
services and databases used to expose the data they are working with.

The functionality of DAC is implemented by a DACConnector Class, which is in
effect a factory for the creation of Data Source Objects (see the diagram in
Figure -47). All such objects are treated as experiment resources and are
available to the experiment developer (requestor) within the context of the
application script.

Connectivity with the Data Access Service is ensured by a WSRF client link, with
precompiled stubs for the service deployed at HLRS. The Data Access Service
further overlays the linked data sources with an OGSA-DAI database
aggregation, and facilitates multi-source queries with the use of a specialized
language. While this functionality is still under development, the DAC can
formulate proper queries to the DAS in order to retrieve data from data sources
(please see [OGSADAI] for further information).

Figure -47: Handle creation and query process inside DAC.

ViroLab Deliverable 3.3 - version 1.1 Page 59 of 87

A Data Source Object is capable of querying the data source which it represents
and returning results to the user. Results can be formatted in various ways, at
the developer’s behest - the default mode is returning result data as 2D Ruby
structures (lists of lists, as Ruby does not directly support an “array” datatype).

Implementation of DAC has made use of the following technologies:

• JDBC for access to standalone databases (enabled through JRuby/Java
integration),

• Apache WSRF for access to the Data Access Service (powered by the
Apache Axis framework with WS-Addressing support and service stubs)

• JRuby tools for constructing queries and formatting data

4.5.2.Current Functionality
The current version of DAC

• has the first version of DAC integrated with VL runtime

• is capable of querying standalone databases and interfacing with DAS

• Uses JRuby [JRUBY], JDBC [JDBC] and Axis/WSRF [AXIS] (as explained
above)

Queries can be submitted to standard types of relational databases (including
MySQL and PostgreSQL), as well as to DAS data sources directly. Moreover,
special methods supplied by the DAS are covered (such as RequestRuleSets)
and can be invoked within VL scripts on DAC connector objects. All queries are
sanitized to prevent SQL injection attacks.

Results can be returned as plain data structures (typically lists of lists – for 2D
SQL data tables) or as JRuby objects with getter/setter functions and methods to
iterate through result sets.

4.5.3.Planned Functionality
Current work concentrates on a uniform representation of DAC Data Objects (i.e.
any type of data retrieved from a Data Source). By creating an object-oriented
framework for the representation of Data Objects in experiment scripts, further
integration of diverse data storage mechanisms could be achieved, and
furthermore, it would become possible to store persistent Data Objects which
could be accessed in between execution of scripts.

Work is also underway on the following issues:

• Dynamic loading of DAS interfaces and client instantiation

• Development of a Data Access plugin

• Work towards a unified VL data resource repository

4.5.4.Deviations from the Design Document
The sequence diagram presented above has changed somewhat with respect to
the plans included in [D3.2]. This is the result of better understanding of user
needs and discussions on how to ease the integration of DAC with the Virtual
Laboratory runtime system. However, the underlying principles remain
unchanged.

4.6.Grid Application Optimizer

ViroLab Deliverable 3.3 - version 1.1 Page 60 of 87

As explained in Section 4.4, the Grid Operation Invoker is responsible for
invocation of Grid Object’s operations, however, the component itself is not able
to decide on which Grid Object Instance (for the terminology related to Grid
Objects please see Section 4.2 of [D3.2]) the operation is going to be invoked.
For the purpose of making decisions, which Grid Object Instance is optimum to
be used by Grid Object Invoker, the Grid Application Optimizer (in short GrAppO)
was created.

On the base of information obtained from the Grid Resources Registry, the
Monitoring Service and the Provenance Service, the Grid Application Optimizer
chooses an optimum solution – either a ready Grid Object Instance or Grid
Object Implementation with a resource on which its instance (GOb Instance) can
be created.

In order to support multiple optimization criteria and strategies, the GrAppO
provides a configuration mechanism – Optimization Policy.

The details of Grid Application Optimizer design and communication channels
were provided in Section 5.1.7 of [D3.2] with changes specified in Section 4.6.4
of this document.

4.6.1.Implementation Description
At the current stage of development Grid Application Optimizer operates in its
simplest mode – short-sighted optimization with a basic algorithm.

As depicted in Figure -48, optimization is requested by Grid Operation Invoker
– through a local connection. After receiving such a request, which contains a
specification of the Grid Object Class to be used, the main GrAppO component –
the GrAppO Manager obtains all necessary data concerning this Grid Object
Class from Grid Resources Registry (via a remote connection, using SOAP).
The data includes information about all Grid Object Implementations of the
required GOb Class and their instances. The information are then passed to
Optimization Engine with a request for optimization. The optimization itself is
performed by this component with regard to the configuration specified by the
Optimization Policy, which includes an optimization algorithm to be used and
options pertaining to the strategy of optimization. Depending on the strategy, a
request for estimation of possible solutions can be performed by Performance
Predictor, which will be able in the future to use data obtained from Monitoring
Service and Provenance Service (see Section 4.6.3).

ViroLab Deliverable 3.3 - version 1.1 Page 61 of 87

Figure -48: Grid Application Optimizer decomposition diagram – currently implemented
GrAppO main components, connected to other runtime modules: GOI and GRR

The Optimization Policy can be passed either as a ready Java Object or as a
location of an XML file storing the configuration for the Grid Application Optimizer
constructor.

All the components of the Grid Application Optimizer are implemented in Java
[JAVA]. For the implementation of a connection to the Grid Resource Registry
XFire [XFIRE] libraries were used. JDom [JDOM] libraries were utilized for
reading XML configuration files.

4.6.2.Current Functionality
The current version of GrAppO offers:

• Stateless optimization with use of simple service selection policy

• Integration with Grid Resources Registry (connection through SOAP) and
Grid Operation Invoker (local connection)

4.6.3.Planned Functionality
In the future releases of GrAppO, the following features will be included:

• Integration with monitoring and provenance – data obtained from these
components are vital for more advanced optimization meaning a more
accurate service choice

• Implementation of advanced optimization algorithms – if the data from
monitoring and provenance are available, some more advanced algorithms
can be used for optimization

• Development of far-sighted optimization – although optimization of the
whole application at a time can bring some improvement to the
application’s performance, it requires all the previously mentioned featured

ViroLab Deliverable 3.3 - version 1.1 Page 62 of 87

and some powerful mechanisms for the application’s structure analysis.
However, since the solution improvement is not guaranteed, this feature
has the lowest priority

4.6.4.Deviations from the Design Document
In comparison to [D3.2, Section 5.1.7], the following changes were introduced to
Grid Application Optimizer:

• The name of the component is changed – the name ‘Scheduler’ or ‘Grid
Resource Scheduler’ used previously is replaced by ‘Grid Application
Optimizer’ or simply ‘Optimizer’. This is because the functionality of Grid
Application Optimizer focuses on finding an optimum service, which is
much narrower than functionality of a typical scheduler, thus the name
‘optimizer’ seems more accurate. Along with the name of the component,
the term ‘scheduling’ is replaced by ‘optimization’ and the names of modes
in which the component may operate are changed to ‘short-sighted
optimization’ (instead of ‘simple scheduling’) and ‘far-sighted optimization’
(instead of ‘pre-scheduling’)

• An external dependency added – a new communication channel to the
Middleware Provenance Service will be created in order to gain information
about performance of the services from which the GrAppO should choose
the optimum in previous invocations.

ViroLab Deliverable 3.3 - version 1.1 Page 63 of 87

5.Data Virtualization and Access

Data virtualization and access shall hide the underlying data resource
technologies from the users by providing specific virtualization services forming a
single point of access and using standard user interfaces. These interfaces shall
encapsulate several functionalities for querying, delivering, and transforming
data but shall also make those interactions secure and reliable. Therefore,
different modules have been independently designed, which offer appropriate
capabilities based on standard web service interfaces to their users, while all of
them together compose a sophisticated data management system for accessing
distributed and at the same time heterogeneous data resources.

Figure -1: Overall data management architecture.

5.1.Data Access and Handling
The data access and handling infrastructure is the most important part of the
virtualization layer. It shall provide interfaces to access different types of
resources - including relational and XML databases as well as files – in a
transparent and consistent way and allow users to perform different activities on
these resources, like querying, updating, and delivering data. Therefore, the
OGSA-DAI [OGSADAI] framework provides various data resource-dependent
data handling activities - so called Data Resource Accessors - to connect with
corresponding types of resources. With these accessors one is able to access the
data resources in a common way basically using standard SQL statements.

ViroLab Deliverable 3.3 - version 1.1 Page 64 of 87

5.1.1.Implementation Description
Most of the interfaces provided are directly connected with corresponding OGSA-
DAI interfaces. Figure -492 depicts the specific use case where a user wants to
invoke a query using the interfaces of the DAS. On the right side of the picture,
the involved components of OGSA-DAI and their interactions are listed. Based on
the request, different activities are performed after an authorization mechanism
has granted access to them. Those are typically connected with one data
resource accessor, which uses a database-dependent driver to establish a
connection with the underlying resource.

When dealing with multiple data providers, each of them usually has its own
installation of a data access system including the data access service linked with
an OGSA-DAI data service. The coordination of all these single systems requires
one central entry point, which acts as the only “visible” and accessible data
access system, and which hides all other data access systems from the users. In
theory users should be unaware that they are using a federation rather than a
single data resource. Currently, the DAS offers one specific functionality that
handles a federated query. The main operations are similar to the ones shown in
Figure -492 with the difference that this has to be done many times.

Figure -492: DAS use case of a typical data access request and OGSA-DAI interactions.

5.1.2.Current Functionality
The module currently offers a set of different functionalities for accessing
distributed data resources. The basic features allow the interaction with
underlying databases in a common way but also provide specific methods such
as distributed queries, download of publicly available rule sets, and more. Details
on the interfaces currently available are described in [DAS-API].

For more information about their usage and their functionality, please refer also
to the DAS manual provided in the appendix of this document.

ViroLab Deliverable 3.3 - version 1.1 Page 65 of 87

5.1.3.Planned Functionality
The following functional enhancements are planned for future releases:

• Parallelization of distributed queries: An algorithm that enables parallel
processing of a distributed query – currently done in a sequential order -
to increase performance and reliability of complex user queries

• Application-specific transformations that transform data or data formats
for specific needs of ViroLab applications

5.2.Data Resource Discovery
Data resource discovery virtualizes the location of data resources and forms one
of the basic services. Applications specify data resources in terms of logical
names qualified by predicates – using a so called Meta Query Language (MQL) -
rather than giving exact queries. The discovery service maps this terms onto
actual data resource-dependent statements. A query can be, for example “Find
records for patient with specific symptom and in specific age group”. Discovery
then involves the mapping of the logical name “patient” with the predicates on
“age” and “symptom” into statements and locations of data resources (e.g.
hospitals) that could contain relevant records.

5.2.1.Implementation Description
The current implementation is mainly based on standard SQL statements, which
are used to obtain relevant schema information. These statements can be simply
used in combination with corresponding OGSA-DAI interfaces that map the
queries according to the underlying database technology. For more information
about the design and implementation, please refer also to the design document
(Deliverable D3.2) [D3.2].

5.2.2.Current Functionality
The current version of this module offers:

• Simple functionalities for retrieving schema information: The specifications
can only be requested using corresponding SQL statements like Describe
table for MySQL databases

• The data access interfaces must be queried using concrete SQL statements
instead of an abstract query language (MQL)

5.2.3.Planned Functionality
• Meta query language to simplify communication with services: Developing

a higher-level language that allows application users as well as developers
to query resources without using real SQL statements but rather common
well-known terms

• Functionalities that enable easy and efficient requesting of schema
specifications

5.3.Security Handling (Authentication,
Authorization and Cryptography)

ViroLab Deliverable 3.3 - version 1.1 Page 66 of 87

This part of the module is basically responsible for any kind of security related
issues. This includes mainly user authorization and message/communication
security whereas user authentication will be handled by a different component
(see Section 5.3.4). User authorization or access control shall be handled in
combination with particular Shibboleth components and message
encryption/decryption shall be principally guaranteed using appropriate
mechanisms provided directly by the Grid middleware.

5.3.1.Implementation Description
Authorization is performed by using the standard libraries shipped with
Shibboleth. They include lots of functionalities to request user attributes from
corresponding home organizations. The authorization decision is currently
implemented in a static way which means as long as a requester carries a
specific attribute (his/her role such as medical doctor, virologist, epidemiologist,
etc.), the user will then be allowed to access the resource so that he/she can
query everything (every data set) provided by the resource and accessible
through the current database management system user account.

The current release uses the cryptographic mechanisms provided by the Globus
Toolkit in combination with OGSA-DAI. In order to ensure encrypted message
transfer between the data access module and corresponding applications, one
simply needs to change some values within some property files.

5.3.2.Current Functionality
An advanced feature in the current release is the integration of the services
together with the authorization principle of Shibboleth. It is in an early stage of
development so that the final user authorization is currently implemented in a
static way, meaning that as long as a user holds specific attributes such as a
role, institution, etc. he/she might be allowed to access a particular resource.
There is no real dynamic procedure for access control available at the moment
but future releases will also contain such a dynamic authorization model where a
so-called Policy Decision Point (PDP) can be asked whether a user has the
necessary attributes for accessing a particular resource.

Message Encryption is also in an early stage of development but the main
communication lanes are secured using the Grid Security Infrastructure principle
provided by the Globus Toolkit [GT].

5.3.3.Planned Functionality
• Dynamic user authorization: Using a PDP and user-defined policies

(usually created and managed by the data providers themselves) to
control the access to their own resources

• Advanced data encryption mechanisms including data stream encryption

5.3.4.Deviations from the Design Document
Due to the usage of the Shibboleth [SHIBBOLETH] technology as the basic
security infrastructure component, the data management services only handle
access control to particular resources whereas user authentication is directly and
completely performed by the user’s home organization coordinated from the
corresponding Shibboleth module (IdP – Identity Provider). More information on
the security principles can be found in [D2.2].

ViroLab Deliverable 3.3 - version 1.1 Page 67 of 87

5.4.Notification, Messaging, Monitoring
The notification handling part consists of two separate modules independent of
each other. The messaging service shall provide functions for distributing events
such as information or error notifications and therefore needs capabilities for
subscribing as consumer as well as for registering as producer in order to
send/receive messages.

Observing the current status and reporting events constitutes the task of the
monitoring service. This subcomponent should be able to interact with other
services, mainly with the security and data handling services to monitor their
behaviour.

5.4.1.Implementation Description
Since monitoring and event handling are also required by other ViroLab
components and one specific component of the virtual laboratory– the Monitoring
Infrastructure (M-Ring) – that is responsible for principally handling those tasks,
this part has not yet been explicitly started and seen as an optional feature in the
context of the DAS. The actual implementation tasks mainly concentrated on the
basic functionalities of the virtualization services in order to deal with
corresponding data resources. However, simple logging mechanisms have been
included to monitor basic user interactions.

5.4.2.Current Functionality
Currently, the data management module makes use of the logging functionalities
provided by OGSA-DAI and Globus Toolkit, which are based on the LOG4J library
provided by the Apache Foundation [LOG4J]. Those include very simple
mechanisms for monitoring general procedures by collecting and storing the
main user interactions.

5.4.3.Planned Functionality
• Enhanced monitoring/logging functionalities particularly for any kind of

data access and exchange

• Interaction with other components of the virtual laboratory providing
similar functionalities such as messaging, logging etc.

5.5.Data Storage and Laboratory Database
The storage handling component does not principally provide any services for
external usage but acts as a separate data resource that can be accessed via the
data access component in order to store different types of processing data such
as intermediate data - data produced during the execution of applications
including monitoring information as well as intermediate data from running
processes – or experimental data from finished application processes including
their input values.

5.5.1.Implementation Description
The basic implementation activities are restricted to a simple set up of a central
database – currently a MySQL database installed at USTUTT – which can be used
for storing different application data such as input values and processing results.

ViroLab Deliverable 3.3 - version 1.1 Page 68 of 87

This data store can also be directly accessed via the interfaces provided by data
access module.

5.5.2.Current Functionality
The current version of Data Storage and Laboratory Database offers:

• A separate database for storing relevant application data. Currently,
limited only to the DRS application but can be easily adapted also to other
applications

• Stored data contains a specific key for accessing corresponding data sets
directly from e.g. the provenance system

5.5.3.Planned Functionality
• Store input and output data from several applications used in ViroLab

• Store also intermediate data mainly obtained from long-time running
mathematical simulations or computations

ViroLab Deliverable 3.3 - version 1.1 Page 69 of 87

6.Provenance Tracking System – PROToS
PROToS is a knowledge-based, lightweight and fully distributed set of
components responsible for gathering provenance data, exposing it for later
mining and building advanced provenance queries.

From the technical point of view, the whole system was designed with storage
space and query processing speed in mind (see Section 6.3.7 in [D3.2]). It
features many modern solutions, such as ontology processing logic and data
routing, XML storage or XQuery support. From the technical point of view it uses
such technologies as Dependency Injection containers (Spring), XML persistent
storage, portlet with AJAX GUI technologies and JMX based configuration utilities.
PROToS design is described in details in Section 6.3 of [D3.2].

From the user’s point of view we were aiming at ease of use for all types of
users, both technicians and medical people. It expresses in technologies we have
chosen and in Graphical User Interface (QUaTRO component, see Section 6.3.3
of [D3.2], fragment elaborating on QUaTRO).

6.1.PROToS Core
The core of PROToS is the crucial component in the overall architecture. It
exposes external, Web Services based interfaces for provenance storage and
retrieval, thus providing single point of provenance processing. It employs and
manages hierarchical, distributed storage of provenance data, which is crucial for
speed of the provenance processing tools, such as QUaTRO. Incoming data is
balanced and routed using various algorithms to ensure fulfilling requirements
defined at the project’s beginning. Design of the component is described in great
details in Section 6.3.4 of [D.3.2].

6.1.1.Implementation Description
Aiming to provide a technically advanced system for provenance tracking we
have chosen to use industry-standard technologies/solutions in the PROToS
implementation. Some of them could be found in Section 6.3.2 of [D3.2]. The
following list comprises selected technologies with short explanations.

• Web Services - XFire (http://xfire.codehaus.org).

XFire is a next-generation java SOAP framework, with easy to use API and
including support for many standards, as WS-Security or JAX-B. It is built
on a low memory footprint StAX model, so it's also a very good performer.
We have chosen XFire over Apache Axis/Axis2 because of performance
reasons. In test, XFire is 2 to 6 times faster as Axis with 1 - 1/5 of it's
latency. We are convinced that these numbers are the best justification.

• Internal middleware - RMI

(http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp)

RMI stands for Remote Method Invocation and is Java-native object
oriented API for RPC. While being pure Java, it's performance is very good.
RMI provides also tight integration with Java security and encryption
mechanisms, making good use of SSL/TLS. All mentioned reasons
convinced us to choose RMI over popular Web Services based solution. Of
course performance was the most important reason of our choice.

• Component container - Spring (http://www.springframework.org)

ViroLab Deliverable 3.3 - version 1.1 Page 70 of 87

http://www.springframework.org/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://xfire.codehaus.org/

Spring is a container for POJO components that makes use of Dependency
Injection design pattern. It enables PROToS developers to define instances
that will implement specified interfaces, and 'inject' them into components
that are dependent of them. This unique feature simplified PROToS design
making it much more robust and cleaner. Spring is much more than DI-
compliant container, being the leading java, non-EJB application
framework. It offers full support for such technologies as JMX, RMI and
XFire-based Web Services.

• Management technology - JMX

(http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement/)

JMX stands for Java Management eXtensions and is the standard for
managing and monitoring of Java applications. JMX is highly standardized
and provides out-of-the-box tools for building modular, dynamic solutions
for managing systems like PROToS. We are convinced that using this
technology will saved us much time and make our system cleaner and
more robust.

• Ontology API - Jena2 Ontology API (http://jena.sourceforge.net/)

Jena is pure Java framework for building Semantic Web applications, with
excellent API for OWL language. It includes own SPARQL implementation,
called ARQ with query engine and rule-based reasoner. Jena allows other
reasoners to be deployed and could perform lot of PROToS ontology-
related processing as validation of OWL classes and individuals. What is
more, Jena supports natively reading and storing OWL in XML format,
which is crucial as we have chosen XML database for our storage. Even
though Jena isn't a very good performer, we believe that it's the best
available framework with many useful features that would be very difficult
to achieve otherwise.

• OWL Reasoners - Pellet (http://pellet.owldl.com/)

Pellet is the leading-edge reasoner for OWL ontologies that provides a very
good performance and full compliance with OWL-DL dialect. It also
provides a set of untypical features as ontology analysis and repair,
species validation, and datatype reasoning, which could be used internally
by PROToS.

• XML storage - eXist (http://exist.sourceforge.net)

eXist is an Open Source, XML native database with built-in XQuery
support. It also supports XUpdate, an open language for modifying XML
data. Being native XML database eXist is also a quite good performer. On
the Java side, eXist supports XML:DB API that provides a common
interface to XML databases. The main reason for this choice was XQuery
support, as it's one of the primary assumptions for PROToS system.
Another major reason was support for XML:DB API, which was chosen as
main interface for the Storage Peer component, thus speeding up whole
PROToS implementation process.

As mentioned earlier, and defined in the D3.2, section 6.3.4 (“PROToS Core
Overview”), PROToS Core is organized as a set of components. Implementation
solutions used in each component are listed below.

• The core, built on Spring and distributed as Java Web Archive (WAR),
which requires Java Servlet 2.5 compliant container, as Tomcat

ViroLab Deliverable 3.3 - version 1.1 Page 71 of 87

http://exist.sourceforge.net/
http://pellet.owldl.com/
http://jena.sourceforge.net/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

(http://tomcat.apache.org/) to operate and uses XFire based Web
Services for external interfaces. Jena and Pellet are employed for ontology
processing. The whole component can be configured using JMX or by hand
– configuration is stored using XStream (http://xstream.codehaus.org)
syntax. Communication with storage components is made using secured
RMI.

• Storage Super Node is also Spring based, but being distributed as
standard Java application (JAR) does not require managed environment to
operate. Ontology processing and configuration options are the same as in
the case of the core. Every instance runs own RMI naming service,
exposing itself for remote access from the core component.

Storage Peer is currently implemented as sole eXist instance.

6.1.2.Current Functionality
Current functionality of the PROToS component could be viewed from two
different standpoints: infrastructure (developer) and usage (end user).

Looking from the first point of view, we have managed to accomplish:

• Structure of the component with full compliance to the design presented in
D.3.2, that is divided into three physical components separately
distributed.

• Internal infrastructure prepared for further extensions planned by
implementing suitable solutions, as design patterns: Strategy, Factory,
Bridge, Adaptor and others.

• Management infrastructure, based on JMX with common model for all
components. Further extensions of components will be automatically
included in their management options.

• Persistent state / configuration functionality. All components are statefull
and keep their state / configuration between lifecycle events.

• Common annotation-based ontology event model service, with validation
based upon semantic information. Infrastructure allows for automatic
service of newly generated event of standard type and defines new types,
by implementing dedicated interfaces.

• Common query support.

From the second standpoint following features have been implemented:

• Gathering of provenance data provided by the monitoring infrastructure
and generated by the EGT (Event Generation Tool, see section 5.2)

• Support for retrieval of provenance data by using XQuery-based queries

• Simple validation of incoming data and queries, based on the semantic
information where applicable

Support for user ontologies, divided into application, data and experiment,
located anywhere in the net and configurable by standard mechanisms (JMX,
XML). Ontologies can be downloaded and distributed among components active
in the current configuration.

6.1.3.Planned Functionality
For new releases of the PROToS we are planning significant upgrades both in the
infrastructure and end-user functionalities.

ViroLab Deliverable 3.3 - version 1.1 Page 72 of 87

http://xstream.codehaus.org/
http://tomcat.apache.org/

The first huge improvement in the field of infrastructure is an implementation of
the fully distributed storage for provenance data. Currently, PROToS accepts as
many Storage Nodes as configured, but configures and uses only one of them.
This improvement needs implementation of efficient data distribution algorithms
(more than one is planned) and an algorithm that will allow for querying XML
data distributed on many component. Although this functionality is not an easy
task we believe it will take performance of the PROToS to the next level.

Next functionality we are planning to implement is broader support of the
ontology processing, which will bring additional features as consistency validation
of incoming provenance data and support for such query languages as SPARQL
and RDQL. One more thing that will also be enabled is semantic reasoning over
provenance data. This improvement is anticipated, but in our opinion in the
current ViroLab Virtual Laboratory environment performance plays a more
important role, thus distributed storage should be implemented earlier.

Last improvement that is planned is implementing own solution for the Storage
Peer component. It will stick to our common component model with all its
peculiarities, such as statefulness and JMX configuration.

6.2.Event Generation Tool
The provenance tracking system exposes an interface for experiment events
deliverance. Because information is internally represented in ontologies, there is
a need for a tool generating event java classes wrapping ontology individuals.

Event Generation Tool explores delivered ontology and generates event java
bean classes encapsulating individual URI, data type properties, functional
properties and additional attributes specific to PROToS. The generated classes
are dedicated to be utilized by all components delivering events to the
provenance system.

The attributes referring to ontological concepts are extended with proper
annotations necessary to instantiate individuals. These annotations are used both
by Semantic Event Aggregator when instantiating monitoring events and by the
PROToS Core when storing individuals from incoming events.

6.2.1.Implementation Description
The Event Generation Tool is a single independent component. The generation
process respects several decisions on the classes specification:

• the serializable interface is implemented

• both class and attribute names are identical with respect to ontological
names

• setters and getters for all attributes and argumentless public constructor
are provided

• functional properties are mapped to single attributes while multiple
properties are mapped to collections of values

• attributes collections are implemented respecting Java Generics approach
and are instantiated by constructor

• object properties are mapped to attributes containing a related individual
URI

ViroLab Deliverable 3.3 - version 1.1 Page 73 of 87

• all properties have a protected scope to enable convenient future
inheritance

The java classes are related in a derivation hierarchy corresponding to an
ontology concepts hierarchy. Due to such an approach, generated events
encapsulate only properties defined explicitly in ontology concepts omitting
inherited properties. By default, all classes derive from Thing. However, it is
possible to configure the top class of derivation hierarchy, in mostly cases
VirolabDataEntity.

Every semantically valuable attribute is associated with an annotation describing
its meaning. These annotations address:

• ontological class URI

• ontological property URI

• individual URI

All generated classes are placed in corresponding packages - the mapping
between ontological name spaces and package names is defined in an xml
configuration file.

The Event Generation Tool component is implemented in Java [JAVA]. Jena
framework [JENA] is utilized to explore OWL ontologies [OWL].

6.2.2.Current Functionality
At the current stage of development Event Generation Tool offers following
functionality:

• generation of annotated bean classes from ontologies respecting a
derivation hierarchy

• restrictions on derivation hierarchy

• mapping between namespaces and package names

• mapping between ontological data types and Java data types

6.2.3.Planned Functionality
The future Event Generation Tool release should be mindful of the information
coherency issue. In order to ensure that provenance system works with the
latest version of information model, the tool should be automatically notified of
changes applied to domain ontology and automatically generate and deploy a
new version of the library.

6.3.Semantic Event Aggregator
Semantic Event Aggregator is a component responsible for building ontological
information from monitoring events data. It provides transformation between
monitoring events at two distinct levels of abstraction:

• xml files published by producers

• ontology individuals represented in OWL language

The aggregator exposes an interface for gathering xml events. The interface can
be accessed directly by event producers or via monitoring middleware. There are
few restrictions on delivered xml events data, the main content is expected to be
augmented with event types and ACID, what can be easily achieved by utilizing

ViroLab Deliverable 3.3 - version 1.1 Page 74 of 87

vldr – ViroLab data representation library containing proper factories and
helpers.

The aggregation process highly bases on aggregation rules, described
semantically. Every aggregation rule defines:

• what events should be aggregated

• how events ACID should correspond with each other

• what actions should be undertaken when the rule is sufficient

The mapping between xml data and ontological information is represented as an
ontology extension - a dedicated ontology extending the created ontology with
annotation properties, but not influencing the ontology itself. Ontology extension
contains derivation concepts that define how to build the experiment ontology:

• what elements in xml hierarchy refer to ontological concepts

• what elements and attributes correspond with particular data type and
object properties

• what additional operations are desirable in order to establish individual
properties - these operations are expected to be encapsulated in Java
classes placed in aggregator classpath by an ontology extension author

Aggregator presents ontology independence in order to enable future changes in
the ontology structure.

The created ontology in form of individuals collection is enclosed in dedicated
wrappers. It is then transformed utilizing events library generated by Event
Generation Tool and delivered to the provenance tracking system.

6.3.1.Implementation Description
The architecture of the Semantic Event Aggregator is depicted in Figure -50.

Figure -50: The decomposition diagram of the Semantic Event Aggregator

The aggregator manages xml data context – a current monitoring data set that
has been collected but not yet aggregated. The context is realized in form of a
hierarchical mapping structure which enables efficient access through addressing
by ACID and event type.

ViroLab Deliverable 3.3 - version 1.1 Page 75 of 87

The context is influenced in the following activities:

• registration of new events provided by monitoring middleware

The events are preprocessed by EventHandler which validates and extracts
ACID before passing a document to the context

• monitoring context regarding aggregation rules

Whenever a new event is published, all the rules referring to this particular
event type are checked.

When an aggregation rule is satisfied, the aggregator removes from context
documents referring to aggregated events and passes the document to the
IndividualFactory. This component instantiates individual wrappers in two
steps:

• create all individuals and associate datatype properties

• discover relations between created individuals and associate object
properties - this step includes the search for an xml document tree for the
elements referring to a proper ontology concept

The wrappers are operated by registered listeners. Currently, only the
ProvenanceAggregationListener is provided, which is responsible for the
instantiation of PROToS events utilizing a library generated by the Event
Generation Tool, however, new listeners for additional consumers are possible. It
addresses the situation when other components subscribe for ontological events
and possibly expect different representation.

All Semantic Event Aggregator components are implemented in Java. Jena
framework is used to manage ontologies. JDom is used to parse XML documents
[JDOM].

6.3.2.Current Functionality
At the current stage of development, the Semantic Events Aggregator offers
following functionality:

• gathering events delivered via remote logger (log4j specification)

• aggregation of events at different levels of ACID coherency

• building of single ontology (currently, the experiment ontology is
supported), including individuals data type properties

• extraction multiple individuals from single xml files and discovery of object
properties

• utilizing external classes to extend aggregation process with more complex
operations, such existing ontology querying

6.3.3.Planned Functionality
The future aggregator releases should offer the following functionality:

• integration with the GEMINI monitoring system via adapters to
publish/subscribe a model

• define more than one ontology extension in order to build more than one
ontology (currently, an experiment ontology is supported)

• enable adding properties to individuals already existing in PROToS
ontology

ViroLab Deliverable 3.3 - version 1.1 Page 76 of 87

6.4.Query Translation Tools (QUaTRO)
QUery TRanslation tOols (QUaTRo), is a set of tools which allow constructing
complex queries over both data and provenance repositories, expressed in terms
of the domain familiar to end users of the ViroLab VL (scientists, clinicians).
Each tool is equipped with a carefully designed Graphical User Interface in the
form of a portlet that will be integrated in the ViroLab portal. Design of the
QUaTRO GUI aims at ease of use without sacrificing ability to create complicated
queries. This is possible because of extensive use of the ViroLab ontologies from
all domains: data, application and experiment.

Some details of tools that we are planning to implement in the QUaTRO suite
could be found in the section 6.3.3 of the D.3.2. More advanced description of
the QUaTRO and its tools is available in [PROV].

6.4.1.Implementation Description
As for now we have implemented the Ontology-based Query Construction Tool,
described in the publication mentioned in the previous section. This tool is more
advanced version of the Ontology Query Wizard described in the D.3.2, section
6.3.3. It follows the basic ideas of the Ontology Query Wizard but allows for
construction of much more complicated queries. All implementation details below
refer to the Ontology-based Query Construction Tool.

Because QUaTRO aims to be part of the ViroLab Portal, tool was designed to be
portlet, running on GridSphere portlet container. Thus it is distributed as Java
Web Archive (WAR). Technologies used:

• Google Web Toolkit (GWT, http://code.google.com/webtoolkit/), the AJAX
framework that allows greater interactivity of our applications GUI. One of
the biggest profits of using GWT is elimination of unnecessary reloads of
whole page when accessing data (for example loading input values from
DB). Moreover, elements of the GUI (such as boxes and buttons) could be
added or removed when needed, for example when adding new branch to
a query.

• Hibernate (http://www.hibernate.org/). Together with DB backend used
for query storage. Queries are persisted on per user basis, so no one is
able to see other users queries.

• Jena Semantic Web Framework (http://jena.sourceforge.net/), used for
loading and processing domain ontologies inside the QUaTRO application.

• XFire (http://xfire.codehaus.org/) used for accessing Web Services –
based components as the PROToS Core.

• DAC (Data Access Client, http://gforge.cyfronet.pl/projects/dac) used by
the tool for accessing and loading application data.

Whole project and all of its sub components are managed by Maven, thus
simplifying such tasks as dependencies, build and installation.

6.4.2.Current Functionality
Application at its current stage is nearly fully-functional. It allows user to
construct query in an easy, natural way. Query could be constructed from
ontology concepts or properties, application data (loaded in real-time by DAC)
and value operators, such as equality or ‘contains’. Query tree can be extended
at any level by joining new branches – suitable operator ‘and’ is available in the

ViroLab Deliverable 3.3 - version 1.1 Page 77 of 87

http://gforge.cyfronet.pl/projects/dac
http://xfire.codehaus.org/
http://jena.sourceforge.net/
http://www.hibernate.org/
http://code.google.com/webtoolkit/

GUI. Constructed query trees are automatically converted to the XQuery form
and sent to the PROToS Core. Retrieved results are rendered and presented to
user by adequate portlets. User can also store queries for later use and load
previously saved ones. Storage could be permanent or temporary – GUI provide
so called ‘quick slots’ for the second type of storage. Queries loaded from
persistent storage are presented in an editable, tree-like form and can be
changed before reuse.

All options required for the tool operation could be configured by XML files.
Currently configuration is divided into following files:

• QUaTRO core configuration. Allows to choose which ontologies will be
loaded into GUI, configure ontology – data mappings and so on.

• Persistent storage configuration – database backend details for the DAC
Client (QUaTRO-DAC). Configuration of the DAC service to be used, data
sources and details, including databases available and connection
credentials.

6.4.3.Planned Functionality
At present we are experiencing some minor bugs in our response-rendering
code, which are to be eliminated at fast as possible. Next we plan to take our
code to the production quality. This process will include depth unit and functional
testing. Also some refactoring will be applied, oriented on cleaning our code and
implementing standard design patterns where applicable.

For next releases of the “Ontology-based Query Construction Tool” we plan
many improvements. Most important ones are listed below.

• New class of value operators, such as ‘count’ or ‘at least’. This kind of
operators is known as ‘aggregation operators’ and currently is partially
implemented by the QUaTRO logic, but not available in the GUI yet.

• Ability to define relation (expressed by an operator) between attributes,
residing in different branches of a query. At present, only relation between
attributes and constant values can be expressed.

• Ability to traverse ontology graph in both ways. This will be done by
defining and handling of the reverse properties for ontology concepts.

All mentioned above improvements are fruits of countless meetings with possible
end users and our analysis of possible, real-world queries that could be
constructed in this QUaTRO tool.

Our long-term plans include designing and implementing more than one QUaTRO
tool. Especially we are preparing to build second tool described in the section
6.3.3 of the D.3.2 document, namely ‘Language-to-query Translation Tool’.
Although this tool will be definitely not an easy task, we believe that it will enable
end users to define and process more complicated queries in easier way.

ViroLab Deliverable 3.3 - version 1.1 Page 78 of 87

7.List of Virtual Laboratory Manuals
The main body of this deliverable is accompanied by a set of appendices that
provide more detailed information on the tools and components building the first
prototype of the virtual laboratory. These appendices are structured as manuals
and are targeted for specific user groups. The list contains:

• Appendix 1: Experiment Users’ Manual

• Appendix 2: Experiment Developers’ Manual

• Appendix 3: Virtual Laboratory Developers’ Manual

ViroLab Deliverable 3.3 - version 1.1 Page 79 of 87

8.Summary
This document presents the core components of the ViroLab WP3 and the status
of their implementation after 12 months of the project. It also presents
experiments which can be executed using the current structure of the ViroLab
Virtual Laboratory. For each component, a list of implemented features was
presented. If the implementation of a component strayed from the design
description outlined in D3.2, the appropriate rationale was also provided. This
document is expected to serve as a report on the state of the ViroLab Virtual
Laboratory and also to present guidelines and plans for future developments of
the system within the scope of ViroLab.

As described in the design deliverable, we follow a phased approach,
implementing the most crucial components early on in order to progress to more
advanced elements of functionality at later stages of development.
Implementation progress as well as any emerging problems and opportunities
will be described in subsequent WP3 deliverables.

The work presented within this deliverable is also covered by a number of
publications prepared in parallel with project development, as detailed below:

• Publications on the ViroLab Virtual Laboratory in general

1. Virtual Laboratory in ViroLab, Marian Bubak, Tomasz Gubala, Maciej
Malawski, Marek Kasztelnik, Tomasz Bartynski, Piotr Nowakowski; Cracow
Grid Workshop CGW'06

2. From Molecule to Man: Decision Support in Individualized E-Health, Peter
M.A. Sloot, Ilkay Altintas, Marian Bubak, Charles A. Boucher; IEEE Com-
puter Society,vol 39, no.11, pp. 40-46, Nov., 2006

3. The ViroLab Virtual Laboratory for Viral Disease Treatment, M. Bubak, T.
Gubała, P. Nowakowski; iSTGW bulletin (submitted)

• Publications on specific parts of the virtual laboratory

1. GScript Editor as a Part of the ViroLab Presentation Layer, Wlodzimierz
Funika, Piotr Pegiel; Cracow Grid Workshop CGW'06

2. Optimization of Grid Application Execution , Joanna Kocot, Iwona Ryszka;
Master of Science Thesis supervised by Marian Bubak; AGH University of
Science and Technology, June 2007, Krakow, Poland; See presentation

3. Monitoring of Component-Based Applications , Eryk Ciepiela; Master of Sci-
ence Thesis supervised by Marian Bubak; AGH University of Science and
Technology, June 2007, Krakow, Poland

• Publications related to the GridSpace platform

1. GridSpace - Semantic Programming Environment for the Grid , Tomasz
Gubala, Marian Bubak; 6-th International Conference on Parallel Pro-
cessing and Applied Mathematics PPAM'2005, LNCS 3911, pp. 172-179,
2006

2. Experiments with distributed component computing across Grid boundar -
ies Maciej Malawski, Marian Bubak, Michał Placek, Dawid Kurzyniec, and

ViroLab Deliverable 3.3 - version 1.1 Page 80 of 87

http://www.icsr.agh.edu.pl/mambo/docman/task,doc_download/gid,17/Itemid,69/
http://www.icsr.agh.edu.pl/mambo/docman/task,doc_download/gid,17/Itemid,69/
http://www.springerlink.com/content/l04135602vp56l16/?p=7c7f7d71e36c45178cb3838d3906554a&pi=59
https://virolab.cyfronet.pl/~eryk/msc/msc-draft10-final-eng.pdf
http://virolab.cyfronet.pl/~asia/msc/MScThesis_OptGridAppExecution_Slides.pdf
http://virolab.cyfronet.pl/~asia/msc/MScThesis_OptGridAppExecution.pdf

Vaidy Sunderam. In Proceedings of the HPC-GECO/CompFrame workshop
in conjunction with HPDC 2006, Paris, 2006.

An up-to-date list of Virtual Laboratory-related publications can be found at
http://virolab.cyfronet.pl.

ViroLab Deliverable 3.3 - version 1.1 Page 81 of 87

http://virolab.cyfronet.pl/

Abbreviations

Abbreviation/Term Explanation
AAS Aminoacid Sequence

ACID Application Correlation Identifier

API Application Programmer’s Interface

ARID Application Run Identifier

CCA Common Component Architecture

DAC Data Access Client

DAS Data Access Services

DB Database

DEISA Distributed European Infrastructure for Supercomputing

DGE Data Gathering Engine

DOS Domain Ontology Store

DRAM Drug Resistance Associated Mutations

DRE Data Retrieval Engine

DRS Drug Ranking System

DS Distributed Storage

DSS Decision Support System

EGEE Enabling Grids for e-Science in Europe

EMI Experiment Management Interface

EPE Experiment Planning Environment

EPL Experiment Planning Language

FLOWR For-Let-Where-Order by-Return

GOb Grid Object Class

GObI Grid Object Instance

GObID Grid Object Identifier

GObImpl Grid Object Implementation

GOp Grid Operation

GOI Grid Operation Invoker

GrAppO Grid Application Optimizer

GRR Grid Resources Registry

GSEngine GridSpace Engine

GT Globus Toolkit

GUI Graphical User Interface

HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ViroLab Deliverable 3.3 - version 1.1 Page 82 of 87

Abbreviation/Term Explanation
IEEE Institute of Electrical and Electronic Engineers

IoC Inversion of Control

JMX Java Management Extensions

JSR Java Specification Request

JVMTI Java Virtual Machine Tool Interface

LCG LHC Computing Grid

LHC Large Hadron Collider

LOB Large Object

MLA Mutation List Analysis

MQL Meta Query Language

MVC Model-View-Controller

M-Ring ViroLab Virtual Laboratory Monitoring Infrastructure

NS Nucleotide Sequence

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture – Data Access
Integration

OGSA-DQP Open Grid Services Architecture – Distributed Query
Processing

OO Object-Oriented

OR Object-Relational

OWL Web Ontology Language

QUaTRO Query Translation Tools

PDP Policy Decision Point

PROToS Provenance Tracking System

RAD Rapid Application Development

RBAC Role-Based Access Content

RDF Resource Description Framework

RDQL Resource Description Framework Data Query Language

RMI Remote Method Invocation

RPC Remote Procedure Call

SCM Source Code Management

SN Storage Node

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SSN Storage Super Node

SSO Single Sign-On

SVN Subversion

ViroLab Deliverable 3.3 - version 1.1 Page 83 of 87

Abbreviation/Term Explanation
TLS Transport Level Security

UI User Interface

UML Unified Modeling Language

URI United Resource Identifier

URL Unified Resource Locator

UTF8 8-bit Unicode Transformation Format

VL Virtual Laboratory

VM Virtual Machine

VO Virtual Organization

VPN Virtual Private Network

WP Workpackage

WS Web Service

WS-I Web Services Integration

WSDL Web Services Definition Language

WSRF Web Services Resource Framework

XML Extensible Markup Language

XSL Extensible Stylesheet Language

ViroLab Deliverable 3.3 - version 1.1 Page 84 of 87

References

[AXIS] The Apache Axis project, a Java platform for creating
and deploying Web Services applications,
http://ws.apache.org/axis/

[BIOMED] Assel M., Krammer B., Loehden A. Management and
Access of Biomedical Data in a Grid Environment. HLRS
– High Performance Computing Center of University
Stuttgart, Cracow Grid Workshop, 2006

[D2.1] ViroLab Project. D2.1 – State of the art Survey, Design
and Workpackage Specification. ViroLab Project
Consortium, 2006

[D2.2] ViroLab Project. D2.2 – Architecture for Presentation
Layer. VO Pilot Deployment with Basic Middleware for
Data Access, Resource Management and Information.
ViroLab Project Consortium, 2007

[D3.1] ViroLab Project. D3.1 - State of the art Survey, Design
and Workpackage Specification. ViroLab Project
Consortium, 2006

[D3.2] ViroLab Project. D3.2 – Design of the Virtual
Laboratory. ViroLab Project Consortium, 2007

[D3.3USR] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: Experiment Developer Tools Manual, August 2007

[D3.3DEV] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: Experiment User Tools Manual, August 2007

[D3.3VLDEV] ViroLab Project Consortium: Deliverable 3.3 Appendix
1: ViroLab Runtime Components Documentation,
August 2007

[DAS-API] Matthias Assel: Data Access Service Application
Programming Interface,
http://www.hlrs.de/organization/ds/projects/virolab/da
sapi/index.html

[DPIR] Example design Patterns in Ruby on
http://www.rubygarden.org/

[GT] The Globus Toolkit Homepage.
http://www.globus.org/toolkit

[H2O] Pawel Jurczyk, Maciej Golenia, Maciej Malawski, Dawid
Kurzyniec, Marian Bubak, and Vaidy S. Sunderam. A
system for distributed computing based on H2O and
JXTA. In Cracow Grid Workshop 2004, Kraków, Poland,
2004

[HIBERNATE] Hibernate Relational Persistence for Java and .NET,
www.hibernate.org

[IOC] Inversion of Control Containers and the Dependency
Injection pattern

ViroLab Deliverable 3.3 - version 1.1 Page 85 of 87

http://www.hibernate.org/
http://www.globus.org/toolkit
http://www.rubygarden.org/ruby/page/show/ExampleDesignPatternsInRuby
http://www.rubygarden.org/ruby/page/show/ExampleDesignPatternsInRuby
http://ws.apache.org/axis/

http://www.martinfowler.com/articles/injection.html

[JAVA] Sun Corporation, Java Programming Language,
http://java.sun.com

[JAVALL] Denis Caromel, Wilfried Klauser and Julien Vayssi`ere,
Towards seamless computing and metacomputing in
Java, Concurrency Practice and Experience, volume 10,
number 11-13

[JDBC] Java Database Connectivity,
http://java.sun.com/javase/technologies/database/

[JDOM] JDOM XML parser, http://www.jdom.org/

[JENA] Jena – a Semantic Web Framework,
http://jena.sourceforge.net

[JRUBY] JRuby – Java powered Ruby implementation,
http://jruby.codehaus.org

[JUNG] JUNG — the Java Universal Network/Graph Framework,
http://jung.sourceforge.net/

[LOG4J] Apache logging service,
http://jakarta.apache.org/log4j/

[MOCCA] Maciej Malawski, Dawid Kurzyniec, and Vaidy
Sunderam, MOCCA – towards a distributed CCA
framework for metacomputing. In Proceedings of the
10th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS2005), 2005

[MOCCA_DIST] MOCCA homepage
http://www.icsr.agh.edu.pl/mambo/mocca

[MYSQL] MySQL Open Source Database, MySQL AB 1995-2006,
http://www.mysql.com/

[NITRO] Nitro project, http://www.nitroproject.org

[OGSADAI] The OGSA-DAI Project.
http://www.ogsadai.org.uk/index.php

[OWL] M.K. Smith and Ch. Welty and D.L. McGuinness (eds.),
OWL Web Ontology Language Guide, W3C
Recommendation 10 February 2004,
http://www.w3.org/TR/owl-guide/

[PROTÉGÉ] Stanford University, Protégé knowledge-base
framework, http://protege.stanford.edu/

[PROV] B. Balis, M. Bubak, J. Wach User Oriented Querying
over Repositories of Data and Provenance

[RDF] F. Manola and E. Miller (eds.), RDF Primer, W3C
Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-primer/

[RDFSCHEMA] D. Brickley and R.V. Guha (eds.), RDF Vocabulary
Description Language 1.0: RDF Schema, W3C

ViroLab Deliverable 3.3 - version 1.1 Page 86 of 87

http://www.w3.org/TR/rdf-primer/
http://protege.stanford.edu/
http://www.w3.org/TR/owl-guide/
http://www.ogsadai.org.uk/index.php
http://www.nitroproject.org/
http://www.mysql.com/
http://www.icsr.agh.edu.pl/mambo/mocca
http://jakarta.apache.org/log4j/
http://jung.sourceforge.net/
http://jruby.codehaus.org/
http://jena.sourceforge.net/
http://www.jdom.org/
http://java.sun.com/javase/technologies/database/
http://java.sun.com/
http://www.martinfowler.com/articles/injection.html

Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-schema/

[RCP] Rich client platform (RCP) applications
http://www.eclipse.org/community/rcp.php

[RDQL] A. Seaborne, RDQL - A Query Language for RDF, W3C
Member Submission 9 January 2004,
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/

[RMIX] Dawid Kurzyniec, Vaidy Sunderam, Semantic Aspects
of Asynchronous RMI: the RMIX Approach, (Proceedings
of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04))

[ROR] Ruby on Rails open-source web framework,
http://www.rubyonrails.org

[RUBY] Ruby language, http://www.ruby-lang.org

[SESAME] Sesame RDF Framework, Aduna and NLnet Foundation
1997-2006, http://openrdf.org/

[SHIBBOLETH] The Shibboleth project.

http://shibboleth.internet2.edu

[SOAP] Simple Object Access Protocol,
http://www.w3.org/TR/soap/

[SPRING] Spring Framework, www.springframework.org

[SVN] Subversion, version control system,
http://subversion.tigris.org/

[SVNKIT] SVN Kit, pure Java Subversion implementation
http://svnkit.com/

[VIROLAB] The ViroLab Project Website. http://www.virolab.org

[VIROLAB-VL] The ViroLab Virtual Laboratory Website.
http://virolab.cyfronet.pl/

[WEKA] Weka Data Mining Toolkit website
http://www.cs.waikato.ac.nz/~ml/weka

[WTS] Pieter Libin, Bart De Deckere, Joris Van
Santvoort: Wts: a stateful web service infrastructure,
http://wts.sf.net/

[XFIRE] XFire, http://xfire.codehaus.org

[XPATH] XML Path Language Website.
http://www.w3.org/TR/xpath

[XSL] XSL Transformations. http://www.w3.org/TR/xslt

ViroLab Deliverable 3.3 - version 1.1 Page 87 of 87

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://xfire.codehaus.org/
http://wts.sf.net/
http://www.cs.waikato.ac.nz/~ml/weka
http://virolab.cyfronet.pl/
http://www.virolab.org/
http://svnkit.com/
http://subversion.tigris.org/
http://www.springframework.org/
http://www.w3.org/TR/soap/
http://shibboleth.internet2.edu/
http://openrdf.org/
http://www.ruby-lang.org/
http://www.rubyonrails.org/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.eclipse.org/community/rcp.php
http://www.w3.org/TR/rdf-schema/

	1.Executive Summary
	2.Overview of the First Virtual Laboratory Prototype
	3.Demonstration of the Virtual Laboratory Prototype
	3.1.Virological Analysis of HIV Virus Genotype
	3.1.1.Description of Experiment
	3.1.2.User Group
	3.1.3.Execution Inside the Virtual Laboratory

	3.2.Querying over Provenance and Data
	3.2.1.Description
	3.2.2.Intended user group
	3.2.3.Requirements
	3.2.4.Execution Inside the Virtual Laboratory

	3.3.Acquiring Drug Resistance Information Regarding HIV Virus
	3.3.1.Description
	3.3.2.User Group
	3.3.3.Requirements
	3.3.4.Execution Process

	3.4.Demonstration of Planning of an Experiment
	3.4.1.Description
	3.4.2.User Group
	3.4.3.Setting up the work environment
	3.4.4.Planning the data acquisition part
	3.4.5.Sharing experiment with other developers
	3.4.6.Planning the computation access part
	3.4.7.Releasing the experiment plan for users

	3.5.Data Mining for a Classification Pattern
	3.5.1.Description
	3.5.2.Intended user group
	3.5.3.Technical Perspective
	3.5.4.Requirements
	3.5.5.Detailed code explanation
	3.5.6.Running the experiment

	4.Runtime System
	4.1.GridSpace Engine
	4.1.1.Implementation Description
	4.1.2.Current Functionality
	4.1.3.Planned Functionality

	4.2.Grid Resources Registry
	4.2.1.Implementation Description
	4.2.2.Current Functionality
	4.2.3.Planned Functionality
	4.2.4.Deviations from the Design Document

	4.3.Domain Ontology Store
	4.3.1.Implementation Description
	4.3.2.Current Functionality
	4.3.3.Planned Functionality

	4.4.Grid Operation Invoker
	4.4.1.Implementation Description
	4.4.2.Current Functionality
	4.4.3.Planned Functionality

	4.5.Generic Data Access Client
	4.5.1.Implementation Description
	4.5.2.Current Functionality
	4.5.3.Planned Functionality
	4.5.4.Deviations from the Design Document

	4.6.Grid Application Optimizer
	4.6.1.Implementation Description
	4.6.2.Current Functionality
	4.6.3.Planned Functionality
	4.6.4.Deviations from the Design Document

	5.Data Virtualization and Access
	5.1.Data Access and Handling
	5.1.1.Implementation Description
	5.1.2.Current Functionality
	5.1.3.Planned Functionality

	5.2.Data Resource Discovery
	5.2.1.Implementation Description
	5.2.2.Current Functionality
	5.2.3.Planned Functionality

	5.3.Security Handling (Authentication, Authorization and Cryptography)
	5.3.1.Implementation Description
	5.3.2.Current Functionality
	5.3.3.Planned Functionality
	5.3.4.Deviations from the Design Document

	5.4.Notification, Messaging, Monitoring
	5.4.1.Implementation Description
	5.4.2.Current Functionality
	5.4.3.Planned Functionality

	5.5.Data Storage and Laboratory Database
	5.5.1.Implementation Description
	5.5.2.Current Functionality
	5.5.3.Planned Functionality

	6.Provenance Tracking System – PROToS
	6.1.PROToS Core
	6.1.1.Implementation Description
	6.1.2.Current Functionality
	6.1.3.Planned Functionality

	6.2.Event Generation Tool
	6.2.1.Implementation Description
	6.2.2.Current Functionality
	6.2.3.Planned Functionality

	6.3.Semantic Event Aggregator
	6.3.1.Implementation Description
	6.3.2.Current Functionality
	6.3.3.Planned Functionality

	6.4.Query Translation Tools (QUaTRO)
	6.4.1.Implementation Description
	6.4.2.Current Functionality
	6.4.3.Planned Functionality

	7.List of Virtual Laboratory Manuals
	8.Summary

