

Deliverable 3.3 Appendix 1
ViroLab Virtual Laboratory:
Experiment Users’ Manual

Project Start: 01-03-2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-027446

Website: http://www.virolab.org

Due-Date: 31-08-2007

Delivery: 13-09-2007

Lead Partner: CYFRONET

Coordinator UvA, Prof. Dr P.M.A. Sloot

Dissemination Level: Public

Status: Final

Approved: Quality Board, Steering
Committee

Version: 1.0

Log of Document

Version Date Changes Summary Authors
0.1 29/08/2007 Initial version of the manual Tomasz Gubala

0.2 31/08/2007 Contribution from developers

Robert Pajak, Dariusz Krol,
Marek Kasztelnik, Piotr
Regiel, Eryk Ciepiela, Tomasz
Bartynski, Joanna Kocot, Piotr
Nowakowski

0.3 05/09/2007
Section 5.1 checked, refined,
supplemented and formatted

Eryk Ciepiela

0.4 06/09/2007 Added EMI section Tomasz Gubala

0.5 06/09/2007 Section 5.1 rechecked and
reformatted

Eryk Ciepiela

0.6 07/09/2007 Quatro section added Kuba Wach

1.0 13/09/2007
Manual title changed, minor
changes

Marian Bubak

Virolab Deliverable 3.3 A1, version 1.0 Page 2 of 40

TABLE OF CONTENTS

 COPYRIGHT NOTICE.. 5

1. INTRODUCTION...6

1.1. TARGET AUDIENCE...6
1.2. MORE INFORMATION...6

2. VIRTUAL LABORATORY ENVIRONMENT DESCRIPTION.. 8

2.1. EXPERIMENT PIPELINE IDEA... 8
2.2. DEFINED CLASSES OF USERS... 9
2.3. FUNCTION OF THE EXPERIMENT REPOSITORY.. 10

3. EXPERIMENT MANAGEMENT INTERFACE USER’S MANUAL..12

3.1. ACCESSING AND RUNNING EXPERIMENT MANAGEMENT INTERFACE... 12
3.1.1. Accessing EMI..12
3.1.2. EMI portlets explained...12
3.1.3. Experiment Repository configuration and browsing... 13
3.1.4. Experiment execution... 15

3.2. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT INFORMATION...16

4. QUERY TRANSLATION TOOLS USER’S MANUAL... 18

4.1. ACCESSING AND RUNNING QUERY TRANSLATION TOOLS... 18
4.1.1. QUaTRO step-by-step.. 18
4.1.2. QUery TRanslation tOols (QUaTRO) GUI Features Overview.. 21

4.2. AUTHORS CONTACT INFORMATION..23

5. GRIDSPACE EXPERIMENT USER MANUAL...24

5.1. INSTALLATION AND USE.. 24
5.1.1. Installation .. 24
5.1.2. Working with gsengine command line tool.. 25
5.1.3. Working with gsquery command line tool ...31
5.1.4. Working with GSEngine API ...31

5.2. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT INFORMATION...35

 ABBREVIATIONS.. 37

 REFERENCES... 40

Virolab Deliverable 3.3 A1, version 1.0 Page 3 of 40

List of Figures

FIGURE -1: THE GENERIC, SIMPLEST VERSION OF THE EXPERIMENT PIPELINE....................... 8

FIGURE -2: EXPERIMENT PLAN BEING CONCEIVED, SHARED AND DEVELOPED...................... 10

FIGURE -3: THE PROCESS OF RELEASING AND USING EXPERIMENT PLAN................................ 11

FIGURE -4: MAIN EXPERIMENT MANAGEMENT INTERFACE (EMI) WINDOW.............................12

FIGURE -5: THE EXPERIMENT REPOSITORY CONFIGURATION WINDOW................................... 13

FIGURE -6: EXAMPLE OF A LIST OF EXPERIMENTS STORED INSIDE A REPOSITORY,.............14

FIGURE -7: EXPERIMENT DETAILS IN THE EXPERIMENT CONTEXT PORTLET......................... 14

FIGURE -8: FEEDBACK WINDOW IN THE EXPERIMENT CONTEXT PORTLET............................. 15

FIGURE -9: EXPERIMENT LICENSE TEXT IN THE EXPERIMENT CONTEXT PORTLET............. 15

FIGURE -10: THE EXPERIMENT EXECUTION FIELD..15

FIGURE -11: AN EXAMPLE OF AN EXPERIMENT EXECUTION RESULT.. 16

Virolab Deliverable 3.3 A1, version 1.0 Page 4 of 40

COPYRIGHT NOTICE

Copyright (c) 2007 by Academic Computer Centre CYFRONET AGH. All rights
reserved.

Any use of the products described in this document is subject to the terms stated
in the GPL license agreement: http://opensource.org/licenses/gpl-license.php.

Virolab Deliverable 3.3 A1, version 1.0 Page 5 of 40

http://opensource.org/licenses/gpl-license.php

1. INTRODUCTION
This document contains a set of manuals and tutorials for a person that would
like to use experiments prepared within the ViroLab virtual laboratory. The
sections inside contain instructions how access and run tools provided for a
scientists. The tools are mostly in form of web-based user interfaces (sometimes
stand-alone, sometimes displayed inside the ViroLab Portal). They include the
Experiment Management Interface that allow for experiment download and
execution, the Query Translation Tools that help the user form questions on past
experiments and results provenance and finally the GridSpace Engine manual for
the users that would like to access the laboratory runtime in other, more
complex ways.

1.1. TARGET AUDIENCE

The construction of the ViroLab Virtual Laboratory assumes a smooth
collaboration of various types of users, the most important of which are scientific
programmers that design future experiments and prepare them for use and the
researchers themselves, who would like to execute the prepared experiments to
obtain interesting scientific results. This document is intended for the later.

The proper and effective use of experiment user’s tools does not require deep
knowledge of technicalities of the laboratory itself. The basic grasp of the
important notions, mechanisms and processes taking place in this collaborative
space is however important for an effective cooperation with fellow researchers.
The Section 2 provides this knowledge on sufficient level.

On the other side, the set of tools that are provided to the user (and that are
described in this manual) includes modules of different complexity. Therefore
some of them are simple to use as the tasks they perform are conceptually
simple; other could require understanding of more complex ideas as they model
more complex behaviour – in any case, this document provides the needed
explanations of these concepts so the reading of its content should be sufficient
to start using the virtual laboratory.

1.2. MORE INFORMATION

This document is not the only source of information for future experiment
developers. The ViroLab Virtual Laboratory web pages provide the most recent
and frequently updated versions of the enclosed tutorials. Please check:

http://virolab.cyfronet.pl

for a thorough, complete introduction to Virtual Laboratory and its mechanisms,
tools, runtime etc. In the upper right corner of the page you will find set of
hyperlinks to development sites, where you may:

• obtain the latest releases of the virtual laboratory modules

• read about the development plans and future release time schedule

• report a bug or a feature request, discuss it and monitor its lifetime

The authors of this manual and the software it describes would like to ask for the
assistance of all the developers that would like to use the virtual laboratory.
Please don’t hesitate to use the bug submission and feature request mechanism

Virolab Deliverable 3.3 A1, version 1.0 Page 6 of 40

http://virolab.cyfronet.pl/

in the virtual laboratory development web pages to suggest the authors how to
refine the software. With this process the tools we provide will be more useful
and productive for the future experiment developers.

Virolab Deliverable 3.3 A1, version 1.0 Page 7 of 40

2. VIRTUAL LABORATORY ENVIRONMENT DESCRIPTION

The Virtual laboratory is a set of integrated components that, used together,
form a distributed and collaborative space for science. Multiple, geographically-
dispersed laboratories and institutes use the virtual laboratory to plan, and
perform experiments as well as share their results. The laboratory is prepared to
support virologists, epidemiologists and clinicians investigating the HIV virus and
the possibilities of treating HIV-positive patients. Although the ViroLab Virtual
Laboratory is being built specifically for this domain of science, the conceptual
solutions and the technology developed could be reused for other domains.

2.1. EXPERIMENT PIPELINE IDEA

The central idea behind any virtual laboratory is an in-silico experiment.

Experiment is a process that combines together data with a set of activities that
act on that data in order to yield experiment results. The substrate data required
for an experiment may be obtained from multiple resources in various possible
forms. The activities may be manual, semi-manual or fully automatic, depending
on their nature. No definite restrictions are imposed on the level of complexity of
such an experiment: it might be as simple as listing data inside some remote
database, or much more complex, such as a set of simulators combined together
to obtain some insight into complex phenomena. Moreover, the experiments are
not required to involve just a single, local machine – in fact, the power of the
virtual laboratory comes from combining multiple distributed resources, dispersed
over various geographical locations.

The purpose of the laboratory we present is to support collaborative work of all
the people who are effectively involved in any stage of the experimentation
process. For our purpose, we refer to this process as the experiment pipeline.
Below is a section that explains our view of the subject.

Figure -1: The generic, simplest version of the experiment pipeline.

Figure -1 presents the simplest picture of the experiment pipeline. First of all, one
has to decide what an experiment is about and how it should proceed. The part
of the pipeline concerning design of the future experiment process is called
experiment planning. During that phase the user has to decide upon the main
subject of the planned experiment, its intended results and the means by which
these results should be obtained. Such a detailed description of the experiment
results in experiment execution (the middle part of the process). During this
phase the user performs the experiment according to the plan developed at the
planning stage, using all the resources provided to that user within the virtual
laboratory. The usual outcome of such execution is the result of the experiment.
Since the result itself is of the highest importance for the user, special attention

Virolab Deliverable 3.3 A1, version 1.0 Page 8 of 40

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab

is given to it in the last phase of the pipeline, called result management. Here
the outcome of the experiment may be evaluated, described and stored. Given
the strong collaboration aspect of a virtual laboratory, the results can also be
shared among the users of the laboratory. This stage concludes a single
experiment pipeline run.

It should be stressed that no single part of this pipeline has to be a one-off
activity. It is very probable, and in fact expected, that various stages will be
repeated in order to achieve the correct effect or desired quality.

2.2. DEFINED CLASSES OF USERS

As the virtual laboratory is meant to combine together people of various levels of
expertise, we define two main classes of users who take part in the experiment
pipeline. Their descriptions are provided here, while another class of users
(sharing a common phase in the experiment pipeline) will be introduced later on.

Experiment developer is a person who designs experiments in a specific domain
(like e.g. virology). First of all, this means that the person is skillful enough to
design and denote the way an experiment should proceed. Apart from technical
skills, the developer also possesses a certain level of domain-related knowledge to
understand the nature of the processes the experiment should model – otherwise,
the designed experiments will never be valid. The developer uses dedicated tools
to – among others – search for available data sources, combine them with suitable
computational activities and present the results in an appropriate form. The aim of
the virtual laboratory is to give experiment developers a set of powerful tools
making their task easier, while at the same time not constraining their skill and
creativity in any way.

Experiment user is any person who runs a previously prepared experiment in
order to obtain results. The user may or may not be involved in the process of
experiment preparation – in the latter case it is probable that (future) experiment
users would support developers with their expert knowledge about the modeled
phenomenon. The main objective of the experiment user is to obtain valuable
results that answer important scientific questions.

The person who develops the experiment requires some information on the
resources needed to perform the future experiment. According to the definition,
the experiment can involve both remote data sources and activities that need to
be performed on the data in order to achieve the final result. In the end, the
experiment, successfully completed, should be able to provide experiment
results.

Experiment result in its most general meaning covers anything that is produced
in the course of experiment execution. It could consist of some textual information,
a generated image or a movie, a URL link to further information—almost anything.
While an experiment outcome may be difficult to quantify, such a quantification is
usually useful for easier management of those results. There are no strict rules
here — common sense of developers and users should be applied to decide what
forms a separate result (for instance: a single image, a table of illness
classifications, a file with a database table snapshot…) Since the result of an
experiment is usually of the highest importance for the experiment user, the
virtual laboratory devotes special attention to the management and post-

Virolab Deliverable 3.3 A1, version 1.0 Page 9 of 40

experiment activities which act upon results (such as sharing, describing, storing
etc.).

2.3. FUNCTION OF THE EXPERIMENT REPOSITORY

The purpose of the Experiment Repository within the ViroLab Virtual Laboratory
is to store and provide experiment plans that are developed by experiment
developers and that are used by experiment users. From this perspective the
repository plays a meeting place for these two groups of users of the laboratory -
they share among themselves the experiment plans.

Figure -2: Experiment plan being conceived, shared and developed.

Usually, a typical life cycle of an experiment plan involves:

• initial conception and establishment of a new experiment plan

• shared, cooperative development of the plan by developers

• first release of the plan

• first uses (executions) of the plan by users

• gathering feedback and identifying shortcomings

• further refinement, next version releases

• and so on and so forth...

The Figure -2 shows us the first stages of this process. One developer has an
idea about new experiment that could be developed. She puts those initial
thoughts in form of a sketch of an experiment script and shares that with fellow
developers through the Experiment Repository. In terms of software engineering
this activity of experiment sharing is referred to as initial import.

After that another experiment developer, interested in similar ideas, loads the
experiment plan (in cooperative development this is usually called checkout) to
his development environment and contributes his effort to make the experiment
better. The new changes and additions are shared with the community through a

Virolab Deliverable 3.3 A1, version 1.0 Page 10 of 40

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab

commit operation that essentially synchronizes the content of the repository with
the latest form of experiment developed by the given developer.

At this early stage of experiment planning, the plan in its current form is only
stored in so-called development section of the repository. At the moment no user
is able to obtain and execute this experiment - as it is assumed to be not mature
enough.

Figure -3: The process of releasing and using experiment plan.

After a certain amount of time and some effort put in the experiment plan
development, one of its developers may decide to release a version of the
experiment plan (see Figure -3). Such publication yields a copy of the current
state of the plan in a dedicated space of the Experiment Repository. The two
important features of the releases space (in comparison to the development
space) are: it is accessible by experiment users and the releases put there are
frozen with respect to further changes.

The tool provided for the experiment user is now able to see the released
versions of experiments and also, on request, is able to download a designated
version of given experiment plan. The plan, using the functionality of the tool,
could be now executed and the user may obtain results.

Virolab Deliverable 3.3 A1, version 1.0 Page 11 of 40

3. EXPERIMENT MANAGEMENT INTERFACE USER’S MANUAL

3.1. ACCESSING AND RUNNING EXPERIMENT MANAGEMENT INTERFACE

3.1.1.Accessing EMI

Currently EMI is deployed as a set of three portlets within the Gridsphere portal.
In order to access these portlets it is required to have a valid user account on the
portal. For Virolab the portal is hosted at

• https://virolab.gridwisetech.pl/

and its administrators should be contacted to obtain an account. After
successfully logging into the portal a separate tab called "EMI" holds the portlets
described below (see Figure -4).

Figure -4: Main Experiment Management Interface (EMI) window.

3.1.2.EMI portlets explained

As already mentioned the set of EMI portlets contains three separate portlets
described in the subsections below.

Repository portlet.

The Repository Portlet allows for experiment browsing by contacting external
experiment repositories and downloading a list of available experiments with
detailed information (experiment versions, licenses and user feedback) and
presenting the list to the user.

Context portlet.

The Context Portlet is responsible for presenting experiment details to the user
as well as for experiment execution and user feedback submission. The
presented content is specific for a certain experiment context which is selected
from within the Repository Portlet.

Result and user input portlet.

The third portlet is used to display the experiment output and to submit user
input required by the experiment execution process. The content of this portlet is
changed dynamically according to the state of the experiment execution engine.

Virolab Deliverable 3.3 A1, version 1.0 Page 12 of 40

https://virolab.gridwisetech.pl/
http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-general.png

3.1.3.Experiment Repository configuration and browsing

In order the repository portlet to work an experiment repository needs to be
configured. This involves inputing the address of the remote repository together
with user credentials (if no feedback will be sent and the repository allows for
anonymous access the credentials are not necessary). This can be accomplished
by using the configuration form in the edit page of the repository portlet (to
access the edit page click the pencil symbol in top-right corner of the repository
portlet). The repository configuration form contains predefined repository
addresses (please see Figure -5).

Figure -5: The experiment repository configuration window.

After providing the address and optionally the user credentials and submitting
them to the server by clicking the Change repository button the triangle symbol
in the portlet's bar should be clicked to return to the normal view mode.
Immediately after going to this mode experiment list of the newly configured
repository should be visible. Exemplary list of experiments is presented in Figure
-6.

Virolab Deliverable 3.3 A1, version 1.0 Page 13 of 40

http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-repo-setup.png

Figure -6: Example of a list of experiments stored inside a repository,

On the right side of each experiment release versions are listed. For each version
feedback and license links are provided. Selecting on of them updates the
content of the context portlet. Examples of experiment details, feedback and
license in the context portlet are presented in the following three images
respectively: Figure -7, Figure -8 and Figure -9.

Figure -7: Experiment details in the Experiment Context Portlet.

Virolab Deliverable 3.3 A1, version 1.0 Page 14 of 40

http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-repo-portlet.png
http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-details.png

Figure -8: Feedback window in the Experiment Context Portlet.

Figure -9: Experiment license text in the Experiment Context Portlet.

3.1.4.Experiment execution
Running an experiment.

To execute a particular version of an experiment, experiment details need to be
displayed in the context portlet by clicking a version link of an experiment in the
repository portlet. An execution field will then be displayed in the context portlet
beneath the experiment details, similar to the one in Figure -10.

Figure -10: The experiment execution field.

Virolab Deliverable 3.3 A1, version 1.0 Page 15 of 40

http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-feedback.png
http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-license.png
http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-execution.png

After clicking the Execute experiment button a message about a successful
experiment execution or an error message is displayed. According to the
experiment plan the results will be presented or user input required through the
third portlet. Details are described in the following subsections.

Providing user input.

When a user input is required during an experiment execution the Result and
user input portlet is updated and the user is asked to input required data.

After filling in the form Send data button should be clicked and the data are
transfered back to the execution engine and the process continues. During one
execution a couple of user data requests may be performed.

Analyzing experiment output.

When the experiment execution finishes the output is presented to the user using
the Result and user input portlet which is updated automatically if the user logs
in or is logged in the portal. An exemplary experiment output is presented in .

Figure -11: An example of an experiment execution result.

After clicking the Ok button below the experiment output the content of the
portlet is lost.

Feedback mechanism.

In order to provide feedback to the experiment developer the feedback editor in
the context portlet should be used. This requires however the user to have write
permissions to the experiment repository. After fiiling in the remarks about the
experiment the Save changes button should be clicked. If the feedback
successfully is stored in the repository a proper message is displayed.

3.2. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT
INFORMATION

Virolab Deliverable 3.3 A1, version 1.0 Page 16 of 40

http://virolab.cyfronet.pl/trac/emi/wiki/manual#Feedbackmechanism
http://virolab.cyfronet.pl/trac/emi/attachment/wiki/manual/emi-result.png

The entire source code of the EMI module is accessible through the Subversion
repository (the anonymous read-only access is granted for everyone):

#> svn checkout https://virolab.cyfronet.pl/svn/emi

Should you find any bugs, missing functionality or you’d like to have some nice
new features implemented, please use the ticket emission and management
system on the EMI Trac website:

• Viewing tickets: http://virolab.cyfronet.pl/trac/emi/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/emi/newticket

You do not need any account for that, tickets could be submitted anonymously.

Author and contact information: Daniel Harężlak [d.harezlak@cyfronet.pl].

Virolab Deliverable 3.3 A1, version 1.0 Page 17 of 40

http://virolab.cyfronet.pl/trac/emi/newticket
http://virolab.cyfronet.pl/trac/emi/report

4. QUERY TRANSLATION TOOLS USER’S MANUAL
Following guides explains typical User how to explore provenance query features
through QUaTRO's graphical user interface. First section describes typical use of
the QUaTRO - building a query. Second one lists all additional features of the GUI
with short explanations.

4.1. ACCESSING AND RUNNING QUERY TRANSLATION TOOLS

4.1.1.QUaTRO step-by-step

This manual page documents process of building an example, simple query using
sophisticated QUaTRO GUI. Also some examples of more advanced queries are
presented. For description of additional GUI features Reader should refer to the
Quatro Features manual page.

4.1.1.1.Introduction

QUaTRO allows for building provenance, knowledge-based queries from
following building blocks:

• concepts from ViroLab ontologies, describing experiment, applications and
data. All of them are loaded automatically from current descriptions
published by the vl team. For example NewDrugRanking is a concept
from the DRS application ontology

• properties of these concepts. There are two types of properites:

o object, that model relations between concepts. For example
property usedRuleSet model relation between concepts
NewDrugRanking from DRS application ontology and RuleSet
from data ontology

o datatype, that model relation between a concept and a piece of
data. This type of property could be trated as simple attribute of a
concept. For example, concept NewDrugRanking has property
patientName of type string.

• pieces of data, loaded automatically by using ViroLab Data Access Client
(DAC). This allows user to choose existing parameters for new queries,
that can be fulfilled.

One more thing concerning concepts and data should be noted. Each data
entity in ViroLab is modeled in the data ontology and thus loaded to
QUaTRO as concept. In the relation database (RDB) notion it would be
called table. As piece of data we mean data existing in ViroLab and
accessible by the Data Access Client. In the RDB notion it would be called
column value.

Virolab Deliverable 3.3 A1, version 1.0 Page 18 of 40

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab
http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab

Above image depicts main panel of the query builder. It consists of a combo box,
that is used to select concepts and launch query button.
This is a part of the GUI, where our story begins...

4.1.1.2.Simple Query Example

This sections describes process of creating simple query, that allows for selecting
drug rankings (DRS application), that used rule sets from particular organization
(HIVDB) and were performed on specified patients (with second name Smith).

Query starts with selecting chosen concept using combo box. Clicking on combo
box will show list, containing available concepts from all VL ontologies. In our
example we choose NewDrugRanking concept from the DRS application
ontology.

After selecting a concept new combo box emerges. It contains list of all
properties that exists for this particular concept. At this point datatype and
object properties are mixed at one list.
In our example we extend query by choosing usedRuleSet property.

Virolab Deliverable 3.3 A1, version 1.0 Page 19 of 40

Because the property chosen was object, next combo box that emerges contains
list of concepts that are domain for relation modeled by our property. In our
example only RuleSet concept is suitable and thus was chosen.
Picture depicts further extension to the query - selection of property of current
concept (RuleSet). We do this same way as previously.

We have chosen name property of the RuleSet concept, which occurred to be a
datatype property. We distinguish datatype property from object because instead
of combo box with domain concepts, box with operators and input were
rendered.
Now we choose operator for the name property. Because we want some exact
organization to be taken into account, the equality operator must be chosen.

One last thing in current branch of the query is value for name property
of the RuleSet concept, selected in previous steps. Thanks to unique
data-ontology mapping employed in ViroLab, QUaTRO allows for two ways
of value specification:

• by hand, filling the input box

• automatically, using existing values loaded via DAC

In current example we use the second way. By clicking on a button
located right to the input we open list containing all distinct values for
current attribute. Choice of HIVDB value from the list ends this branch of
the query.

Virolab Deliverable 3.3 A1, version 1.0 Page 20 of 40

Selected property appeared to be a datatype property, so operator and value
boxes emerged. Because we want to select patient with second name Smith we
choose operator contains. This particular operator will search for values with
substring equal to the requested value, entered in the input box.
Click on the launch query button will send our query to the processing.

4.1.1.3.Advanced queries

Above image depicts quite advanced query that could be built using QUaTRO
GUI. It contains multiple branches joined at different levels, five concepts, many
datatype and object properties. Nevertheless, process of building this query is
very similar to the simple one, described in details in the previous section. Using
the same simple mechanisms user is able to build even more advanced queries,
containing tens of concepts and properties.

4.1.2.QUery TRanslation tOols (QUaTRO) GUI Features Overview

This manual page documents some additional features present in the QUaTRO
GUI. Although most of these features aren't necessary for typical User, they can
be found handy. Thus we encourage Users to read this short description. For
information about basic use - query building - Reader should refer to page.

4.1.2.1.Query Storage

Features grouped in this section allows for query storage and load. Storage can
be temporary (quick saves) or persistent (persistent saves).

Virolab Deliverable 3.3 A1, version 1.0 Page 21 of 40

Above image depicts entire storage panel, as can be found in the QUaTRO GUI.
Parts of the storage panel, relevant to specific functionalities are described in
separate sections below.

4.1.2.2.Query load

Above picture shows combo box used for loading queries. The query storage is
separate for every user that logs into ViroLab portal and uses QUaTRO GUI.
Credentials for storage are taken automatically from portlet context, so each
user will see only queries written by himself.
This combo box allows only for loading persistent queries. User should choose
previously saved query using combo box. After selecting a query, QUaTRO will
automatically load it into the query tree. Query will be immediately ready to be
launched.

4.1.2.3.Query persistent storage

Depicted panel part allows to persist current query. It will be stored in the
internal data base and available for later use. Only user that saved the query will
be able do load it in the future.
To save current query (that is query present in the editor) user should enter its
unique description (Current query description) and click button save query.
QUaTRO will display message depending on the success or failure of saving.

4.1.2.4.Query quick save / load

Virolab Deliverable 3.3 A1, version 1.0 Page 22 of 40

Part of the panel depicted above show so called quick slots for queries. Every slot
can hold one query, that will be kept in the memory, not persistent storage. This
is much faster than using persistent saves but will last only as long as portal
session of the current user.
This type of the short-time storage allows user to build for example few versions
of the same query for testing purposes. Actually it acts as a clipboard for
QUaTRO users.
To use this clipboard, users should first input its description in the input box
Current query description and click on chosen slot. If slot is already in use, old
query will be replaced (and thus lost).

4.2. AUTHORS CONTACT INFORMATION

Authors list: Jakub Wach, Bartosz Baliś.

Developer team contact: Jakub Wach [wach.kuba@gmail.com].

Virolab Deliverable 3.3 A1, version 1.0 Page 23 of 40

5. GRIDSPACE EXPERIMENT USER MANUAL

5.1. INSTALLATION AND USE

For versions:

• GSEngine-0.3.0

5.1.1.Installation

Prerequisites

• Java Runtime JRE 1.5, java executable needs to be in the PATH
environment variable

• JRuby v1.0 or higher binary distribution with its installation directory set
as JRUBY_HOME

o http://dist.codehaus.org/jruby/jruby-bin-1.0.zip

o http://dist.codehaus.org/jruby/jruby-bin-1.0.tar.gz

What is inside

• Latest versions of GridSpace Engine (GSEngine) components

• Integrated with: Generic Data Access Client (DAC), GridSpace Application
Optimizer (GrAppO) and Grid Operations Invoker (GOI)

Installation steps for Linux

• Download the archive containing GSEngine release: gsengine-
<version>.tar.gz from GSEngine download page
(http://gforge.cyfronet.pl/frs/?group_id=45)

• Extract the content of the archive:

tar zxvf gsengine-<gsengine_version>.tar.gz

or if you downloaded the .zip version of the archive:

unzip gsengine-<gsengine_version>.zip

• Set environment variable GS_HOME:

export GS_HOME=`pwd`/gsengine-<gsengine_version>/

• To use gsengine from different directories you may also adjust the PATH
environment variable:

export PATH=$GS_HOME/bin:$PATH

Installation steps for Windows XP

• Download the archive containing GSEngine release: gsengine-
<version>.zip from GSEngine download page
(http://gforge.cyfronet.pl/frs/?group_id=45)

Virolab Deliverable 3.3 A1, version 1.0 Page 24 of 40

• Extract the content of the archive:

o click right mouse button on the archive, select "Extract files..." and
follow the wizard steps

• Set environment variable GS_HOME:

set GS_HOME=<gsengine_home>

o where <gsengine_home> is the path to the directory where the
archive was extracted (e.g. C:\gsengine-<gsengine_version>)

• To use gsengine from different directories you may also adjust the PATH
environment variable:

set PATH=%GS_HOME%\bin;%PATH%

In order to check whether GSEngine is properly installed and what is the version,
try to launch it from a command line by typing:

gsengine --version

5.1.2.Working with gsengine command line tool

As long as you have GSEngine's bin directory included in PATH environment
variable you are enabled to launch command line tool by simply typing:

gsengine <parameters>

The parameters are discussed further. However, it is worth to mention here that
every time you need a hint on how to use GSEngine command-line tool or you
just want to check whether the tool is ready just type:

gsengine --help

or simpler:

gsengine -h

and if it is properly installed you can expect to see a help on the syntax of the
command:

To use GSEngine interpreter command-line tool, type 'gsengine'
followed by (use one of the options):
<script_file> [params]* - evaluates the script from the specified
file, the <script_file> can be file path relative to the current
directory; [params] are arguments passed to the script
-r <evaluation_request_file> [params]* - evaluates the script
contained in the evaluation request read from
<evaluation_request_file>;[params] is a list of parameters passed to
evaluation request and to the script itself, i.e. the successive
values correspond to the parameters of the evaluation request
specified as $1, $2 etc., the ones that are not used by the
evaluation request will be passed to the evaluated script.
For information on creating evaluation request files, please visit
http://virolab.cyfronet.pl/trac/vlruntime/wiki/GSEngineUserManual#Ev
aluationrequesttypes
 --help, -h - displays this help

Virolab Deliverable 3.3 A1, version 1.0 Page 25 of 40

 --version, -v - displays GSEngine version

As the hint says, in general, the command accepts evaluation request file option
and other optional parameters. Evaluation request file is a plain XML file.
GSEngine accepts several evaluation request types described by different XML-
Schema files (http://virolab.cyfronet.pl/~asia/gsengine/files/xsd/). Every
type of evaluation request may be parameterized with variables named $1, $2, $3
etc., that will be assigned values provided by parameters no. 1, 2, 3 and so on.
The parameters which are not used by the evaluation request will be passed to
the evaluated script as its arguments.

When no evaluation request is provided with the command, a default one is used
- it is stored in GSEngine installation directory, namely
<GS_HOME>/default.evaluation.request.xml. The default evaluation request
provided with the distribution is of type local file script evaluation request.
Naturally, the user is allowed to customize this default evaluation request by
modifying the aforementioned file. In order to use the default evaluation request
just type:

gsengine <space-separated parameters>

The subsequent sections are dedicated to the specific evaluation request types.

Evaluation request types

A core part that all evaluation request types have in common is an XML sub
element evaluationRequest, which is contained in every specific evaluation
request.

We provide XML-Schema files that specify the evaluation request files syntax for
all the evaluation request types. They can be downloaded from
http://virolab.cyfronet.pl/~asia/gsengine/files/xsd/. Note: The file er-
schema.xsd is required for all the evaluation request types.

<evaluationRequest>
 <dasUrl>...</dasUrl>
 <dosUrl>...</dosUrl>
 <grappoUrl>...</grappoUrl>
 <grrBaseUrls>
 <grrBaseUrl>...</grrBaseUrl>
 <grrBaseUrl>...</grrBaseUrl>
 </grrBaseUrls>
 <optimizationPolicy>...</optimizationPolicy>
 <protosUrl>...</protosUrl>
 <userHandle>...</userHandle>
 </evaluationRequest>

The semantics of the elements nested in the evaluationRequest element is
explained below:

• dasURL element - URL pointing to Data Access Service.

• dosURL element - URL pointing to Domain Ontology Store service.

Virolab Deliverable 3.3 A1, version 1.0 Page 26 of 40

http://virolab.cyfronet.pl/~asia/gsengine/files/xsd/
http://virolab.cyfronet.pl/~asia/gsengine/files/xsd/

• grappoURL element - URL pointing to GridSpace Application Optimizer
service - the application execution optimization service.

• grrBaseURLs element - list of possible locations of Grid Resources Registry.

• grrBaseURL element - URL of Grid Resources Registry.

• optimizationPolicy element - URL pointing to an XML file that defines a
policy to be used during experiment execution optimization.

• protosURL element - URL pointing to Provenance Tracking System
(PROToS) service.

• userHandle element - includes credentials used by security system.

The specific evaluation request types specify a parent element which contains
specific XML elements aside from the evaluationRequest element.

• local file script evaluation request - a request for evaluation of an
experiment stored in the local filesystem. Provides information of the
scripts localization.

o localFileScriptER root element.

o experimentDirectory element - the directory in which the
experiments are stored. The scripts dependencies are resolved using
paths relative to this directory.

o experimentMainFile element - the name of the main experiment
script file. It will be executed by GSEngine.

o rubyLibPath element - contains `path' sub elements that specify
the directories where the external ruby dependencies of the
application are stored.

<localFileScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <experimentDirectory>...</experimentDirectory>
 <experimentMainFile>...</experimentMainFile>
 <rubyLibPath>
 <path>...</path>
 <path>...</path>
 <path>...</path>
 </rubyLibPath>
</localFileScriptER>

• explicit script evaluation request - request for evaluation of explicitly
specified experiment. Provides a way of direct specification of application's
scripts.

o explicitScriptER root element.

Virolab Deliverable 3.3 A1, version 1.0 Page 27 of 40

o scripts element - enclose all scripts and specifies the name of the
main experiment file to be evaluated in mainScriptName attribute.

o script element - specifies an individual script content in its body,
and the script name in the name attribute.

<explicitScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <scripts mainScriptName="...">
 <script name="..."><![CDATA[...]]></script>
 <script name="..."><![CDATA[...]]></script>
 <script name="..."><![CDATA[...]]></script>
 </scripts>
</explicitScriptER>

• repository staged script evaluation request - a request for evaluation of an
application stored in an application repository. Provides information of the
scripts localization, credentials necessary to obtain it.

o repositoryStagedScriptER root element.

o repoUrl element - URL to the experiment repository (it must point
to the directory where experiments are stored).

o repoLogin element - user login, if required for the experiment
repository access.

o repoPassword element - user password (corresponding to
repoLogin), when required for the experiment repository access.

o experimentName element - the name of the experiment to be
executed.

o experimentVersion element - version of the experiment to be
executed.

o experimentMainFile element - the name of the main experiment
script file. It will be executed by GSEngine.

<repositoryStagedScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <repoUrl>...</repoUrl>
 <repoLogin>...</repoLogin>
 <repoPassword>...</repoPassword>
 <experimentName>...</experimentName>
 <experimentVersion>...</experimentVersion>
 <experimentMainFile>...</experimentMainFile>

Virolab Deliverable 3.3 A1, version 1.0 Page 28 of 40

</repositoryStagedScriptER>

In each evaluation request type element's text value don't have to be explicitly
specified. Instead, a variable may be applied that will be assigned the value
given as a parameter with the command. For example:

<repositoryStagedScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <repoUrl>...</repoUrl>
 <repoLogin>$1</repoLogin>
 <repoPassword>$2</repoPassword>
 <experimentName>...</experimentName>
 <experimentVersion>...</experimentVersion>
 <experimentMainFile>...</experimentMainFile>
</repositoryStagedScriptER>

will expect two parameters given as the parameters in a command, for example:

gsengine -r myRepositoryStagedScriptER.xml me mySecret

Not having found the parameters, the tool will print out an adequate error
message, e.g.:

cyfronet.gridspace.engine.EvaluationRequestParameterNotFound: No
parameter at index:1

Examples

Example: explicit script evaluation request

Evaluation request of a simple Ruby scripts with nested dependencies that are
specified explicitly in evaluation request. Application takes 3 parameters that will
be printed out subsequently.

The evaluation request in below may be found at <GS_HOME>/samples/er-
explicit.xml.

<explicitScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <scripts mainScriptName="main.rb">
 <script name="main.rb"><![CDATA[require 'additional_file'
require 'one_more_file'
@@bclass = BClass.new
@@bclass.printSth()
puts ARGV[2]
]]></script>
 <script name="additional_file.rb"><![CDATA[
class AClass
 def printSth()

Virolab Deliverable 3.3 A1, version 1.0 Page 29 of 40

 puts ARGV[0]
 end
end
]]></script>
 <script name="one_more_file.rb"><![CDATA[
class BClass
require 'additional_file'
 def printSth()
 AClass.new.printSth()
 puts ARGV[1]
 end
end
]]></script>
 </scripts>
</explicitScriptER>

Launching it is resulting in the following output:

$ gsengine -r <GS_HOME>/samples/er-explicit.xml a b c
a
b
c

Example: local file evaluation request

Evaluation request of any of the scripts contained in the local filesystem. It takes
two parameters evaluation request parameters:

• scripts_dir script_name

• the path to the directory containing scripts to be executed and name of
the script file (either relative or absolute path)

The evaluation request in below may be found at <GS_HOME>/samples/er-
local.xml.

<localFileScriptER>
 <evaluationRequest>
 ...
 </evaluationRequest>
 <experimentDirectory>$1</experimentDirectory>
 <experimentMainFile>$2</experimentMainFile>
</localFileScriptER>

Example: repository staged script evaluation request

Evaluation request of a simple echo_experiment staged in the SVN repository (at
gforge.cyfronet.pl). It takes two evaluation request parameters:

• user_login

• user_password (for the repository authentication)

Virolab Deliverable 3.3 A1, version 1.0 Page 30 of 40

The evaluation request in below may be found at <GS_HOME>/samples/er-echo-
svn.xml.

<repositoryStagedScriptER>
 <evaluationRequest>
 <...
 </evaluationRequest>
 <repoUrl>https://gforge.cyfronet.pl/svn/gsengine/trunk/gsengine-
exprepo-svn/etc/test-files</repoUrl>
 <repoLogin>$1</repoLogin>
 <repoPassword>$2</repoPassword>
 <experimentName>echo_experiment</experimentName>
 <experimentVersion>1.0</experimentVersion>
 <experimentMainFile>echo_experiment.rb</experimentMainFile>
</repositoryStagedScriptER>

5.1.3.Working with gsquery command line tool

gsquery is an executable that overlays Data Access Client (DAC). It its current
form it enables querying data sources. Invoking it with --help or -h option will
print out the usage instructions.

To use GSQuery command-line tool, type 'gsquery' followed by (use
one of the options):
 <dbplatform>:<address>:<dbname>:<dbuser>:<dbpassword> <query>
-
executes the given <query> on the database specified by the

<dbplatform>:<address>:<dbname>:<dbuser>:<dbpassword> sequence
 --help, -h - displays this help
 --version, -v - displays GSEngine version

Notice that a query is actually a query in terms of Java Database Connectivity
(JDBC) and therefore is not allowed to perform data update.

For further details please refer to the Data Access Client (DAC) documentation.

Examples

Example: simple query

Suppose we need to access mysql database called my_database, where we have
an account with login my_login authenticated by password my_password and make
a sample query for flowers stored in a database.

gsquery
mysql:my_database_host.org:my_database_name:my_login:my_password
"select * from flowers"

5.1.4.Working with GSEngine API

In order to use GSEngine via its Application Programming Interface (API) you
need to have GSEngine previously according to instructions from the first part of
this tutorial. Moreover, you must to include in your application classpath all the
jar files contained in the <GS_HOME>/java directory and its subdirectories.

Virolab Deliverable 3.3 A1, version 1.0 Page 31 of 40

An entry point to the GSEngine API is the
cyfronet.gridspace.engine.InterpreterFacade interface, that provides two
`evaluateScript' overloaded methods as seen below.

public interface InterpreterFacade {
public EvaluationResponse evaluateScript(

EvaluationRequest evaluationRequest, EvaluationCallback callback)
throws InterpreterException,

InvalidEvaluationRequestException,
ScriptNotFoundException,
EvaluationRequestParameterNotFoundException,
UnsupportedEvaluationRequestType;

public EvaluationResponse evaluateScript(
EvaluationRequest evaluationRequest,

EvaluationRequest.Parameters parameters, EvaluationCallback
callback)

throws InterpreterException,
InvalidEvaluationRequestException,

ScriptNotFoundException,
EvaluationRequestParameterNotFoundException,
UnsupportedEvaluationRequestType;

}

The main classes that developer deals with while using InterpreterFacade are:

• cyfronet.gridspace.engine.evalreq.EvaluationRequest - an abstract class
that represents the request for an application evaluation. It contains all
the data needed for creating evaluation context and obtaining the
application script. The subtypes defines a way how application code is
provided from arbitrary location (e.g. local files, files stored in experiment
repository). Each subclass is serializable to the XML form discussed in a
section devoted to gsengine command line tool. Subclasses expose simple
setter methods for setting evaluation requests attributes. Available
subclasses (discussed in details in Section 5.1.2):

o ExplicitScriptEvaluationRequest

o LocalFileScriptEvaluationRequest

o RepositoryStagedScriptEvaluationRequest

• cyfronet.gridspace.engine.evalreq.EvaluationRequest.Parameters - a
class that simply stores evaluation request parameters organized in a list.
The evaluation request is filled with the parameters values as explained
previously.

• cyfronet.gridspace.engine.EvaluationCallback - an interface that
establishes callback data transfer channel while evaluating a script.
Callback provides a way of streaming data during the call (input and

Virolab Deliverable 3.3 A1, version 1.0 Page 32 of 40

output streams), supporting interaction (data inputs) and notification and
information related to application evaluation status sent towards the
application executors. All of the member methods are called by GSEngine
facade implementations. This interface code is highly self-explanatory and
is shown below.

public interface EvaluationCallback {
/**
 * Invoked when evaluation is complete.
 *
 *
 * @param result
 * serialized ruby object that is a result of the

application
 */
public void onEvaluationComplete(String result);
/**
 * This method is called just before application execution and

sets
 * GSEngine

 * id id (GSEID)
 *
 * @param gseid
 */
public void setGseid(String gseid);
/**

 * This method is called in order to make GSEngine provided with
 * output stream where the output of executed application has to
 * be directed.

 *
 * @return
 */
public OutputStream getOutputStream();
/**
 * This method is called in order to make GSEngine provided

with
 * error stream where the error output of executed application has
to
 * be directed.

 *
 * @return
 */
public OutputStream getErrorStream();
/**
 * This method is called in order to make GSEngine provided

with
 * input stream from which where the input of executed
application

Virolab Deliverable 3.3 A1, version 1.0 Page 33 of 40

 * has to taken from.
 *
 * @return
 */
public InputStream getInputStream();
/**
 * This method is called each time the application request for

data
 * to be provided by the application executor. The application

is
 * blocking until this call returns.
 *
 * @param dataRequest
 * @return
 */
public String getData(String dataRequest);
/**
 * Invoked each time interpreter raises exception.
 *
 * @param interpreterException
 */
public void raise(InterpreterException interpreterException);

}

• cyfronet.gridspace.engine.EvaluationResponse - a class that represents a
result of evaluation after it is complete. It stores serialized form of Ruby
object returned by a script if any.

GSEngineFacade interface is covering the underlying implementations. It is in the
GSEngine roadmap to provide multiple realizations of this interface that would
enable remote evaluation of script. However, while the GSEngine is now under
rapid development the only one available implementation is
cyfronet.gridspace.engine.impl.interpreter.EmbeddedInterpreter that enables
scripts evaluation embedded within the same JVM within which interpreter facade
client runs.

For further explanation please refer to the javadoc contained in the distribution.

Example

This example presents general way in which the GSEngine API is used in order to
evaluate an application.

At first the concrete evaluation request has to be instantiated and configured by
setting its attributes. If the evaluation request or application itself takes the
parameters, the Parameter object has to be instantiated and filled with
parameters values. Further we need to provide our realization of
EvaluationCallback interface that establishes the interaction and data flow
between application executor and application. Finally, the InterpreterFacade

Virolab Deliverable 3.3 A1, version 1.0 Page 34 of 40

realization has to be created and its evaluateScript() may be called, that returns
EvaluationResponse object

// first, the concrete evaluation request should be instantiated and
// configured
ExplicitScriptEvaluationRequest er =
new ExplicitScriptEvaluationRequest();

// this attributes in below are common for each kind of evaluation
// request
er.setDasUrl(...);
er.setDosUrl(...);
er.setGrappoUrl(...);
List<String> grrBaseUrls = new ArrayList<String>();
grrBaseUrls.add(...);
er.setGrrBaseUrls(...);
er.setOptimizationPolicy(...);
er.setProtosUrl(...);
er.setUserHandle(...);

// this attributes in below are specific to the
// ExplicitScriptEvaluationRequest
er.addScript("main", "puts ARGV[0]\nputs ARGV[1]\nputs ARGV[2]\n");
er.setMainScriptName("main");

// since 'main' script takes input arguments they should be provided
Parameters params = new EvaluationRequest.Parameters();
params.addParam("arg0");
params.addParam("arg1");
params.addParam("arg2");

// we have to provide our implementation of EvaluationCallback
EvaluationCallback callback =
new MyImplementationOfEvaluationCallback();

// instatiation of InteroreterFacade implementation
InterpreterFacade inter = new EmbeddedInterpreter();
EvaluationResponse ir = inter.evaluateScript(er, params, callback);

For further explanation please refer to the javadoc contained in the distribution.

5.2. SOURCE CODE ACCESS, BUG REPORTING AND AUTHORS CONTACT
INFORMATION

The entire source code of the GridSpace is accessible through the Subversion
repository (the anonymous read-only access is granted for everyone):

Virolab Deliverable 3.3 A1, version 1.0 Page 35 of 40

#> svn checkout https://gforge.cyfronet.pl/svn/gsengine

Should you find any bugs, missing functionality or you’d like to have some nice
new features implemented, please use the ticket emission and management
system on the Trac website of the GridSpace Engine:

• Viewing tickets: http://virolab.cyfronet.pl/trac/vlruntime/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/vlruntime/newticket

You do not need any account for that, tickets could be submitted anonymously.

Authors list: Joanna Kocot, Eryk Ciepiela, Piotr Nowakowski, Tomasz Bartyński,
Maciej Malawski.

Developers team contact person: Eryk Ciepiela [e.ciepiela@cyfronet.pl].

Virolab Deliverable 3.3 A1, version 1.0 Page 36 of 40

http://virolab.cyfronet.pl/trac/vlruntime/newticket
http://virolab.cyfronet.pl/trac/vlruntime/report

ABBREVIATIONS

Fix the list [Tomasz Gubala]

Abbreviation/Term Explanation
AAS Aminoacid Sequence

API Application Programmer’s Interface

ARID Application Run Identifier

CCA Common Component Architecture

DAC Data Access Client

DB Database

DEISA Distributed European Infrastructure for Supercomputing

DGE Data Gathering Engine

DO Domain Ontology

DRAM Drug Resistance Associated Mutations

DRE Data Retrieval Engine

DRS Drug Ranking System

DS Distributed Storage

DSS Decision Support System

EGEE Enabling Grids for e-Science in Europe

EPL Experiment Planning Language

FLOWR For-Let-Where-Order by-Return

GOb Grid Object Class

GObI Grid Object Instance

GObID Grid Object Identifier

GObImpl Grid Object Implementation

GOp Grid Operation

GOI Grid Operation Invoker

GrAppO Grid Application Optimizer

GRR Grid Resources Registry

GT Globus Toolkit

GUI Graphical User Interface

HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

JMX Java Management Extensions

JSR Java Specification Request

JVMTI Java Virtual Machine Tool Interface

Virolab Deliverable 3.3 A1, version 1.0 Page 37 of 40

Abbreviation/Term Explanation
LCG LHC Computing Grid

LHC Large Hadron Collider

LOB Large Object

MQL Meta Query Language

NS Nucleotide Sequence

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture – Data Access
Integration

OGSA-DQP Open Grid Services Architecture – Distributed Query
Processing

OO Object-Oriented

OR Object-Relational

OWL Web Ontology Language

PDP Policy Decision Point

PROToS Provenance Tracking System

RAD Rapid Application Development

RBAC Role-Based Access Content

RDF Resource Description Framework

RDQL Resource Description Framework Data Query Language

RMI Remote Method Invocation

RPC Remote Procedure Call

SN Storage Node

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SSN Storage Super Node

SSO Single Sign-On

SVN Subversion

TLS Transport Level Security

UML Unified Modeling Language

URI United Resource Identifier

UTF8 8-bit Unicode Transformation Format

VL Virtual Laboratory

VM Virtual Machine

VO Virtual Organization

VPN Virtual Private Network

WP Work Package

WS Web Service

Virolab Deliverable 3.3 A1, version 1.0 Page 38 of 40

Abbreviation/Term Explanation
WS-I Web Services Integration

WSDL Web Services Definition Language

WSRF Web Services Resource Framework

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Virolab Deliverable 3.3 A1, version 1.0 Page 39 of 40

REFERENCES

Remove the list if not used at all [Tomasz Gubala]

[AXIS] The Apache Axis project, a Java platform for creating
and deploying Web Services applications,
http://ws.apache.org/axis/

Virolab Deliverable 3.3 A1, version 1.0 Page 40 of 40

http://ws.apache.org/axis/

	Copyright Notice
	1.Introduction
	1.1.Target Audience
	1.2.More Information

	2.Virtual Laboratory Environment Description
	2.1.Experiment Pipeline Idea
	2.2.Defined classes of users
	2.3.Function of the Experiment Repository

	3.Experiment Management Interface User’s Manual
	3.1.Accessing and Running Experiment Management Interface
	3.1.1.Accessing EMI
	3.1.2.EMI portlets explained
	3.1.3.Experiment Repository configuration and browsing
	3.1.4.Experiment execution

	3.2.Source Code Access, Bug Reporting and Authors Contact Information

	4.Query Translation Tools User’s Manual
	4.1.Accessing and Running Query Translation Tools
	4.1.1.QUaTRO step-by-step
	4.1.1.1.Introduction
	4.1.1.2.Simple Query Example
	4.1.1.3.Advanced queries

	4.1.2.QUery TRanslation tOols (QUaTRO) GUI Features Overview
	4.1.2.1.Query Storage
	4.1.2.2.Query load
	4.1.2.3.Query persistent storage
	4.1.2.4.Query quick save / load

	4.2.Authors Contact Information

	5.GridSpace Experiment User Manual
	5.1.Installation and Use
	5.1.1.Installation
	5.1.2.Working with gsengine command line tool
	5.1.3.Working with gsquery command line tool
	5.1.4.Working with GSEngine API

	5.2.Source Code Access, Bug Reporting and Authors Contact Information

	Abbreviations
	References

