
Deliverable 3.3 Appendix 2
ViroLab Virtual Laboratory:

Experiment Developers’ Manual

Project Start: 01-03-2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-027446

Website: http://www.virolab.org

Due-Date: 31-08-2007

Delivery: 13-09-2007

Lead Partner: CYFRONET

Coordinator UvA, Prof. Dr P.M.A. Sloot

Dissemination Level: Public

Status: Final

Approved: Quality  Board,  Steering 
Committee

Version: 1.0



Log of Document

Version Date Changes Summary Authors
0.1 29/08/2007 Initial version of the manual Tomasz Gubala

0.2 29/08/2007 Main contribution imported

Robert Pajak, Tomasz Gubala, 
Dariusz Krol, Marek 
Kasztelnik, Piotr Regiel, Eryk 
Ciepiela, Tomasz Bartynski, 
Joanna Kocot, Piotr 
Nowakowski

0.3 30/08/2007 Formatting  sections  3.2.1, 
3.2.2 and 3.2.3

Marek Kasztelnik

0.4 30/08/2007 DAC  section  reviewed  and 
updated

Piotr Nowakowski

0.5 30/08/2007 Formatting sections 3.1.1 and 
3.1.2

Dariusz Krol

0.6 30/08/2007 Input to section 4 Marek Kasztelnik
0.7 31/08/2007 Small changes Tomasz Gubala

0.8 02/09/2007 Section 5.1 checked, refined, 
supplemented and formetted

Eryk Ciepiela

0.9 03/09/2007
Added  sections:  Example 
experiments,  grid  object 
abstractions, EPE intro

Tomasz Gubala

0.10 06/09/2007 Section 5.1 rechecked Eryk Ciepiela
0.11 06/09/2007 Section 5.3 rechecked Tomasz Bartyński
0.12 06/09/2007 Section 5.3 refined Tomasz Bartyński

1.0 13/09/2007 Manual  title  changed,  DAS 
section added, minor changes

Marian Bubak, Matthias Assel, 
Aenne Löhden

Virolab Deliverable 3.3 A2 – version 1.0 Page 2 of 102



TABLE OF CONTENTS

 COPYRIGHT NOTICE........................................................................................................................................ 8

1. INTRODUCTION.............................................................................................................................................10

1.1. TARGET AUDIENCE...........................................................................................................................................10
1.2. MORE INFORMATION.........................................................................................................................................10

2. EXPERIMENT DEVELOPMENT ENVIRONMENT DESCRIPTION.....................................................12

2.1. EXPERIMENT PIPELINE IDEA............................................................................................................................... 12
2.2. DEFINED CLASSES OF USERS............................................................................................................................... 13
2.3.  MORE DETAILED VIEW......................................................................................................................................13
2.4. THE EXPERIMENT PROCESS SCRIPT....................................................................................................................... 15
2.5. GRID OBJECTS ABSTRACTIONS........................................................................................................................... 16

2.5.1. Explanation of abstraction levels.........................................................................................................16
2.5.2. An example........................................................................................................................................... 17

2.6. FUNCTION OF THE EXPERIMENT REPOSITORY........................................................................................................ 17

3. EXPERIMENT PLANNING ENVIRONMENT USER’S MANUAL......................................................... 20

3.1. EXPERIMENT PLANNING ENVIRONMENT................................................................................................................20
3.1.1. Installation and Configuration.............................................................................................................20
3.1.2. Usage....................................................................................................................................................26
3.1.3. Source Code Access, Bug Reporting and Authors Contact Information............................................. 39

3.2. EXPERIMENT PLANNING PLUG-INS.......................................................................................................................40
3.2.1. Installation........................................................................................................................................... 40
3.2.2. Virtual Organization Configuration Plug-in....................................................................................... 41
3.2.3. Resources Browser Plug-in..................................................................................................................43
3.2.4. Ontology Browser Plug-in................................................................................................................... 53
3.2.5. Source Code Access, Bug Reporting and Authors Contact Information............................................. 58

4. GRID RESOURCES REGISTRY USER’S MANUAL.................................................................................59

4.1. GRID RESOURCES WEB BROWSER...................................................................................................................... 59
4.2. ADDING NEW GRID OBJECTS.............................................................................................................................60

4.2.1. Preparing your Grid Object.................................................................................................................60
4.2.2. Functionality ....................................................................................................................................... 61
4.2.3. Interface .............................................................................................................................................. 61
4.2.4. Interaction mode ................................................................................................................................. 61
4.2.5. Supported technologies and protocols to implement Grid Object ...................................................... 62

5. GRIDSPACE EXPERIMENT DEVELOPER LIBRARY REFERENCE.................................................. 65

5.1. LIBRARY CORE REFERENCE............................................................................................................................... 65
5.2. DATA ACCESS REFERENCE................................................................................................................................ 65
5.3. COMPUTATION ACCESS REFERENCE ................................................................................................................... 67

6. EXAMPLE EXPERIMENTS...........................................................................................................................71

6.1. ECHO..............................................................................................................................................................71
6.1.1.  Short description................................................................................................................................. 71
6.1.2. Detailed code explanation....................................................................................................................72

6.2. NUCLEOTIDE SEQUENCE..................................................................................................................................... 72
6.2.1. Short description.................................................................................................................................. 72
6.2.2. Detailed code explanation....................................................................................................................72

6.3. DATA ACCESS................................................................................................................................................. 73
6.3.1. Short description.................................................................................................................................. 73
6.3.2. Detailed code explanation....................................................................................................................74

6.4. ALIGNMENT.....................................................................................................................................................74
6.4.1. Short description.................................................................................................................................. 74
6.4.2. Detailed code explanation....................................................................................................................75

6.5. LCG TESTBED TEST EXPERIMENT..................................................................................................................... 75

Virolab Deliverable 3.3 A2 – version 1.0 Page 3 of 102



6.5.1. Short description.................................................................................................................................. 76
6.5.2. Detailed code explanation....................................................................................................................76

7. DATA ACCESS SERVICES PROTOTYPE MANUAL...............................................................................78

7.1. INTRODUCTION................................................................................................................................................. 78
7.1.1. References and Source Code................................................................................................................78

7.2. PROTOTYPE USAGE...........................................................................................................................................78
7.2.1. Running the Prototype..........................................................................................................................79
7.2.2. Basic Operations..................................................................................................................................81
7.2.3. Advanced Features...............................................................................................................................84
7.2.4. Known Problems.................................................................................................................................. 85

7.3. INTERFACE REFERENCE GUIDE........................................................................................................................... 86
7.4. TROUBLESHOOTING Q&A................................................................................................................................. 89
7.5. IMPLEMENTATION STRUCTURE............................................................................................................................ 90

7.5.1. Product Use Cases............................................................................................................................... 90
7.5.2. Product Component Model.................................................................................................................. 92
7.5.3. Detailed Implementation Model...........................................................................................................93

7.6. PRODUCT TESTING............................................................................................................................................96
7.7. CONTACT INFORMATION AND CREDITS.................................................................................................................97

 ABBREVIATIONS.............................................................................................................................................. 99

 REFERENCES................................................................................................................................................... 102

Virolab Deliverable 3.3 A2 – version 1.0 Page 4 of 102



List of Figures

FIGURE -1: THE GENERIC, SIMPLEST VERSION OF THE EXPERIMENT PIPELINE..................... 12

FIGURE -2: DESIGN AND USE OF EXPERIMENT WITH SUBSTRATES AND PRODUCTS.............. 13

FIGURE -3: LEVELS OF ABSTRACT GRID OBJECT DESCRIPTION.................................................... 16

FIGURE -4: EXPERIMENT PLAN BEING CONCEIVED, SHARED AND DEVELOPED...................... 17

FIGURE -5: THE PROCESS OF RELEASING AND USING EXPERIMENT PLAN................................ 18

FIGURE -6: SELECTING THE WINDOW -> PREFERENCES MENU OPTION......................................21

FIGURE -7: THE INSTALLED INTERPRETERS PROPERTIES PAGE................................................... 22

FIGURE -8: ADDING NEW INTERPRETER THROUGH THE ADD INTERPRETER DIALOG..........23

FIGURE  -9:  SETTING THE NEWLY ADDED INTERPRETER AS DEFAULT FOR EVERY NEW 
PROJECTS............................................................................................................................................................ 24

FIGURE -10: SELECTING THE RUN -> RUN… MENU OPTION..............................................................25

FIGURE  -11:  CHANGING  THE  INTERPRETER  THAT  IS  USED  FOR  RUNNING  THIS 
PARTICULAR EXPERIMENT.......................................................................................................................... 26

FIGURE -12: ECLIPSE RICH CLIENT PLATFORM (RCP) ....................................................................... 28

FIGURE -13: EPE WELCOME SCREEN ........................................................................................................28

FIGURE -14: NEW EXPERIMENT WIZARD ................................................................................................ 29

FIGURE  -15:  SHARE  AN  EXPERIMENT  WIZARD  –  SELECT  THE  REPOSITORY  LOCATION 
PAGES (LEFT – SELECTING THE REPOSITORY LOCATION PAGE, RIGHT – CREATING A NEW 
REPOSITORY LOCATION PAGE) ................................................................................................................. 33

FIGURE -16: CHANGING THE LABEL OF THE EXPERIMENT PAGE AND ADDING A REVISION 
COMMENT  PAGE  (LEFT  –  CHOOSING  AN  EXPERIMENT  LABEL,  RIGHT  –  ADDING  A 
COMMENT TO THE EXPERIMENT REVISION).........................................................................................34

FIGURE -17: SELECTING THE RESOURCES PAGE ................................................................................. 35

FIGURE -18: “IMPORT AN EXPERIMENT” WIZARD .............................................................................. 36

FIGURE -19: EXPERIMENT CHOOSER ........................................................................................................37

FIGURE -20: RENAMING AN EXPERIMENT BEFORE DOWNLOADING ............................................38

FIGURE -21: CHANGING LOCATION OF THE EXPERIMENT PROJECT ...........................................38

FIGURE -22: RELEASE A VERSION OF AN EXPERIMENT .................................................................... 39

FIGURE -23: EPE UPDATE SITES MANAGER WINDOW..........................................................................41

FIGURE -24: OPENING PROPERTIES PAGES............................................................................................. 42

FIGURE -25: VIRTUAL ORGANIZATION PROPERTIES PAGE.............................................................. 43

Virolab Deliverable 3.3 A2 – version 1.0 Page 5 of 102



FIGURE -26: OPENING PROPERTIES PAGES............................................................................................. 44

FIGURE -27: GRID RESOURCES REGISTRY PROPERTIES PAGE........................................................ 44

FIGURE -28: USER DEFINED GRID RESOURCES REGISTRIES ENTRIES.......................................... 45

FIGURE -29: OPENING AVAILABLE VIEWS BROWSER......................................................................... 46

FIGURE -30: OPENING GRID RESOURCES REGISTRY BROWER........................................................ 46

FIGURE -31: BROWSING GRID RESOURCES REGISTRY....................................................................... 47

FIGURE -32: GRID RESOURCES REGISTRY BROWSER POP-UP..........................................................48

FIGURE -33: GRID RESOURCES REGISTRY BROWSER CONTEXT MENU....................................... 48

FIGURE -34: INSERTING CODE LINE TO EPE EXPERIMENT EDITOR.............................................. 49

FIGURE -35: CODE LINE INSERTED TO EPE EXPERIMENT EDITOR................................................ 50

FIGURE -36: SHOW RESOURCE IN ONTOLOGY BROWSER..................................................................51

FIGURE -37: SHOW RESOURCE IN ONTOLOGY BROWSER RESULT.................................................51

FIGURE -38: SEMANTIC SEARCH................................................................................................................. 52

FIGURE -39: SEMANTIC SEARCH CONTEXT MENU............................................................................... 52

FIGURE -40: SHOW SEMANTIC SEARCH RESULT IN GRID RESOURCES REGISTRY BROWSER.
.................................................................................................................................................................................53

FIGURE -41: THE MAIN ONTOLOGY BROWSER PANEL........................................................................54

FIGURE  -42:  THE  SEARCH  RESULT  VIEW  THAT  APPEARS  AFTER  SUCCESSFUL  GRID 
OPERATION SEARCH ACTION...................................................................................................................... 57

FIGURE -43 WEB RESOURCES BROWSER..................................................................................................59

FIGURE -44: SELECTING THE TYPE OF RULE SETS...............................................................................83

FIGURE -45: RECEIVED NOTIFICATION MESSAGE................................................................................84

FIGURE -46: SAVE THE NEWLY AVAILABLE RULE SETS.....................................................................84

FIGURE -47: THE MAIN ‘DISTRIBUTED DATABASE BROWSER’ WINDOW..................................... 87

FIGURE -48: POP-UP WINDOW FOR ADDING A NEW DATA SERVICE INSTANCE.........................88

FIGURE -49: POP-UP WINDOW FOR UPDATING A SELECTED DATA SET........................................89

FIGURE -50: GENERAL ARCHITECTURAL OVERVIEW OF THE DAS................................................91

FIGURE -51: A TYPICAL USE CASE WITHIN THE VIROLAB SCENARIO.......................................... 92

FIGURE -52: MAIN COMPONENTS OF DAS................................................................................................ 92

FIGURE  -53:  USE  CASE  SHOWING  A  TYPICAL  DATA  ACCESS  REQUEST  AND 
CORRESPONDING INTERACTIONS WITH OGSA-DAI............................................................................ 94

Virolab Deliverable 3.3 A2 – version 1.0 Page 6 of 102



FIGURE -54: CONTROL FLOW OF THE SPECIFIC REQUESTRULESETS METHOD....................... 95

FIGURE -55: INTERNAL FLOW OF STOREAPPLICATIONDATA METHOD.......................................96

FIGURE -56: VISUALIZATION OF DAS UNIT TEST CASES.....................................................................97

Virolab Deliverable 3.3 A2 – version 1.0 Page 7 of 102



COPYRIGHT NOTICE

Software described in sections 2-6:

Copyright (c) 2007 by Academic Computer Centre CYFRONET AGH. All rights 
reserved.

Any use of the products described in Sections 2-4 are subject to the terms stated 
in the GPL license agreement: http://opensource.org/licenses/gpl-license.php.

Software described in section 7:

Copyright (c) 2007 by University of Stuttgart. All rights reserved.

Use of the product described in Section 7 is subject to the terms and licenses 
stated  in  the  GPL  license  agreement.  Please  refer  to 
http://www.gnu.org/licenses/gpl.html for details.

The DAS product in its current version makes use of two freely available software 
frameworks and external libraries in its operations. Namely it depends on the 
following software and libraries:

1. the Globus Toolkit 4.0 provided by The University of Chicago

2. the OGSA-DAI 2.2 Framework provided by The University of Edinburgh

3. the  Addressing library  provided  by  The  Apache  WS_Addressing 
Foundation

4. the Axis libraries provided by The Apache Software Foundation

5. the Commons libraries provided by The Apache Software Foundation

6. the Jaxrpc library provided by The Apache Software Foundation

7. the Log4j library provided by The Apache Software Foundation

8. the SAAJ library provided by The Apache Software Foundation

9. the Xalan library provided by The Apache Xalan Foundation

10.  the XercesImpl library provided by The Apache Xerces Foundation

11.  the Xml-apis library provided by The Apache Software Foundation

12.  the Xmlsec library provided by The Apache Software Foundation

13.  the Xerces xml parsing libraries provided by W3C

14.  the Wsdl4j library provided by The Apache Software Foundation

15.  the JUnit framework provided by JUnit.org

All the above software is provided for use free of charge on the basis of open 
source licenses, either the Apache Public License (1), OGSA-DAI Project Licence 
(2), Apache License (libraries 3 to 12), W3C Copyright Notice and License (library 
13) or Common Public License (libraries 14 and 15).

Globus is a trademark held by the University of Chicago. All rights reserved.

Virolab Deliverable 3.3 A2 – version 1.0 Page 8 of 102

http://www.gnu.org/licenses/gpl.html
http://opensource.org/licenses/gpl-license.php


OGSA-DAI is a trademark held by University of Edinburgh. All rights reserved.

Axis,  log4j,  wsdl4j  are  registered  trademarks  of  The  Apache  Software 
Foundation. All rights reserved.

This research is partly funded by the European Commission IST-2005-027446 
Project “ViroLab”.

Virolab Deliverable 3.3 A2 – version 1.0 Page 9 of 102



1. INTRODUCTION
This document contains a set of manuals and tutorials for a person that would 
like to design new scientific experiments for the ViroLab Virtual Laboratory. The 
sections  inside  contain  instructions  how to  obtain,  install,  configure  and  use 
various  tools  provided  for  an  experiment  developer.  The  tools  include  the 
Experiment Planning Environment that combine the versatile Eclipse Rich Client 
Platform with richness of the JRuby programming language to provide an easy 
yet  powerful  programming environment.  It  is  further  augmented by a set  of 
plug-ins  dedicated  specifically  for  virtual  laboratory  experiment  planning  and 
development.

The other important part  of the manual  is the runtime library reference that 
discusses the available APIs of various components of the laboratory runtime 
system  (called  GridSpace  Engine).  In  order  to  extensively  demonstrate  the 
application  of  these  libraries  in  experiment  development  a  set  of  example 
experiments is described, including code listings and comments.

1.1. TARGET AUDIENCE

The intended audience of this document includes any person that works as a kind 
of (scientific) programmer in an institute devoted to infectious disease research. 
The  function  of  an  experiment  developer  requires  good  knowledge  basic  of 
programming  techniques  (mainly  procedural  programming  with  some 
fundamentals of object-oriented techniques) and understanding of the idea of 
interpreted scripting languages. It also assumes the future developer is familiar 
with the notion of source code repository, collaborative development and shared 
resources. While the main programming platform used is the Ruby interpreter, 
the knowledge of the syntax and semantics of this particular language is not 
required  to  understand  this  manual.  In  fact,  the  authors  claim  that  a 
programmer that never used this language will have little trouble adapting to it 
due to its simple and straightforward nature.

1.2. MORE INFORMATION

This  document  is  not  the  only  source  of  information  for  future  experiment 
developers. The ViroLab Virtual Laboratory web pages provide the most recent 
and frequently updated versions of the enclosed tutorials. Please check:

http://virolab.cyfronet.pl

for a thorough, complete introduction to Virtual Laboratory and its mechanisms, 
tools,  runtime etc. In the upper right corner of the page you will  find set of 
hyperlinks to development sites, where you may:

• obtain the latest releases of the virtual laboratory modules

• read about the development plans and future release time schedule

• report a bug or a feature request, discuss it and monitor its lifetime

The authors of this manual and the software it describes would like to ask for the 
assistance of  all  the developers that would like to use the virtual  laboratory. 
Please don’t hesitate to use the bug submission and feature request mechanism 
in the virtual laboratory development web pages to suggest the authors how to 

Virolab Deliverable 3.3 A2 – version 1.0 Page 10 of 102

http://virolab.cyfronet.pl/


refine the software. With this process the tools we provide will be more useful 
and productive for the future experiment developers.

Virolab Deliverable 3.3 A2 – version 1.0 Page 11 of 102



2. EXPERIMENT DEVELOPMENT ENVIRONMENT DESCRIPTION

2.1. EXPERIMENT PIPELINE IDEA

The central idea behind any virtual laboratory is an in-silico experiment. 

Experiment is a process that combines together data with a set of activities that 
act on that data in order to yield experiment results. The substrate data required 
for an experiment may be obtained from multiple resources in various possible 
forms. The activities may be manual, semi-manual or fully automatic, depending 
on their nature. No definite restrictions are imposed on the level of complexity of 
such an experiment: it  might be as simple as listing data inside some remote 
database, or much more complex, such as a set of simulators combined together 
to obtain some insight into complex phenomena. Moreover, the experiments are 
not required to involve just a single, local machine – in fact, the power of the 
virtual laboratory comes from combining multiple distributed resources, dispersed 
over various geographical locations.

The purpose of the laboratory we present is to support collaborative work of all 
the  people  who are  effectively  involved in  any  stage  of  the  experimentation 
process. For our purpose, we refer to this process as the experiment pipeline. 
Below is a section that explains our view of the subject. 

Figure -1: The generic, simplest version of the experiment pipeline.

Figure -1 presents the simplest picture of the experiment pipeline. First of all, one 
has to decide what an experiment is about and how it should proceed. The part 
of  the  pipeline  concerning  design  of  the  future  experiment  process  is  called 
experiment planning. During that phase the user has to decide upon the main 
subject of the planned experiment, its intended results and the means by which 
these results should be obtained. Such a detailed description of the experiment 
results in  experiment execution (the middle part of  the process).  During this 
phase the user performs the experiment according to the plan developed at the 
planning stage, using all the resources provided to that user within the virtual 
laboratory. The usual outcome of such execution is the result of the experiment. 
Since the result itself is of the highest importance for the user, special attention 
is given to it in the last phase of the pipeline, called  result management. Here 
the outcome of the experiment may be evaluated, described and stored. Given 
the strong collaboration aspect of a virtual laboratory, the results can also be 
shared  among  the  users  of  the  laboratory.  This  stage  concludes  a  single 
experiment pipeline run. 

It should be stressed that no single part of this pipeline has to be a one-off 
activity.  It  is  very probable,  and in fact  expected that various stages will  be 
repeated in order to achieve the correct effect or desired quality.

Virolab Deliverable 3.3 A2 – version 1.0 Page 12 of 102



2.2. DEFINED CLASSES OF USERS

As the virtual laboratory is meant to combine together people of various levels of 
expertise, we define two main classes of users who take part in the experiment 
pipeline.  Their  descriptions  are  provided  here,  while  another  class  of  users 
(sharing a common phase in the experiment pipeline) will be introduced later on. 

Experiment developer is a person who designs experiments in a specific domain 
(like e.g. virology). First of all, this means that the person is skillful enough to 
design and denote the way an experiment should proceed. Apart from technical 
skills, the developer also possesses a certain level of domain-related knowledge to 
understand the nature of the processes the experiment should model – otherwise, 
the designed experiments will never be valid. However, it is usually not required 
for  a  developer  to  fully  comprehend  all  the  data  and  results  of  a  specific 
experiment, provided there is appropriate expert (scientist) assistance available to 
evaluate the developer’s work. This assistance provides initial requirements and 
descriptions  of  the  desired  experiment,  and  also  feedback  on  the  developed 
experiment. The developer uses dedicated tools to – among others – search for 
available data sources, combine them with suitable computational activities and 
present the results in an appropriate form. The aim of the virtual laboratory is to 
give experiment developers a set of powerful tools making their task easier, while 
at the same time not constraining their skill and creativity in any way.

Experiment user is any person who runs a previously prepared experiment in 
order to obtain results. The user may or may not be involved in the process of 
experiment preparation – in the latter case it is probable that (future) experiment 
users would support developers with their expert knowledge about the modeled 
phenomenon.  The main objective of  the experiment  user  is  to  obtain  valuable 
results that answer important scientific questions.

2.3.  MORE DETAILED VIEW

In Figure -2 one may find the part of the previously described process concerning 
substrate/product information: what a specific phase requires and what it yields 
in the process. 

Figure -2: Design and use of experiment with substrates and products.

Virolab Deliverable 3.3 A2 – version 1.0 Page 13 of 102



The  person  who  develops  the  experiment  requires  some  information  on  the 
resources needed to perform the future experiment. According to the definition, 
the experiment can involve both remote data sources and activities that need to 
be performed on the data in order to achieve the final result. Let us consider a 
simple example of an experiment that is meant to classify a set of patients into 
some illness classes. Here, the initial information we have at the beginning of the 
experiment pipeline is as follows: 

• Main idea: given a set of patient data, assigning the most likely illness 
(from a set) to each patient 

• Input data: we require certain reachable information on each patient (e.g. 
some measurements recorded on a hospital database) 

• Activities: we also need a classifier resource, able to understand patient 
data and assign an illness class on the basis of this data (and, possibly, 
some previous training of the internal classification model) 

As is depicted in Figure -2, the developer has to be aware of those requirements 
in order to design a valid experiment. However, the person ultimately needs the 
description of  the data (e.g.  its  format,  language,  amount of  data recorded) 
rather then the data itself - this is a very important distinction which we have to 
stress.  For  instance,  in  the  example  presented  before,  it  can  make  a  real 
difference, since patient data stored at a hospital is usually very confidential. 
However,  provided  the  developer  needs  only  the  format  of  the  data  (and, 
perhaps, some toy example for testing purposes),  it  is  possible that such an 
experiment could be developed by a person not even employed by the hospital. 
Given enough information regarding the data to be processed and the processing 
itself, the developer is capable of creating an experiment plan. 

Experiment plan is  a recipe that describes the process of  certain experiment 
execution in the environment of the virtual laboratory. Physically, it is a set of files 
that,  combined together,  contain  enough information for  experiment users and 
their  tools  to  proceed  with  (hopefully  successful)  experiment  execution.  The 
division of the plan into distinct parts is meant mainly to keep it well structured 
and easier  to  maintain  by  experiment  developers.  An  important  aspect  of  the 
virtualization  part  inside  the  laboratory  is  the  fact  that  experiment  plans  are 
subject  to  storing,  versioning,  exchange,  collaborative  design  and  use  etc. 
Experiment plans are the central focus of the virtual experimental space of the 
laboratory.

Once prepared, our experiment plan is ready to perform real classification (in this 
way we enter the second phase of the experiment pipeline). Now we need access 
to real data (the database of patients) and the classification unit. Please note 
that since the experiment user (in this case, the medical doctor who requires aid 
in illness classification) is a different person than the developer, their respective 
privileges may differ. Since the experiment is executed on behalf of its user, it is 
now able to access vital data about the patients (which constitute the experiment 
input data part of Figure -2). Furthermore, the virtual laboratory that actually (in 
a technical sense) runs the experiment plan, connects to a remote classification 
server to make it perform the required analysis. Figure -2 refers to this step in 
general  as  experiment  process  -  those  are  the  main  functional  blocks  that 
constitute the experiment. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 14 of 102



In the end, the experiment, successfully completed, should be able to provide 
experiment results. In the case of our sample experiment the result would be a 
table of patient-to-illness associations. Now, according to the generic experiment 
pipeline, the user who obtained that result may manage it any way he or she 
likes. 

Experiment result in its most general meaning covers anything that is produced 
in the course of experiment execution. It could consist of some textual information, 
a generated image or a movie, a URL link to further information—almost anything. 
While an experiment outcome may be difficult to quantify, such quantification is 
usually useful for easier management of those results. There are no strict rules 
here — common sense of developers and users should be applied to decide what 
forms  a  separate  result  (for  instance:  a  single  image,  a  table  of  illness 
classifications,  a  file  with  a  database  table  snapshot…)  Since  the  result  of  an 
experiment  is  usually  of  the  highest  importance  for  the  experiment  user,  the 
virtual  laboratory  devotes  special  attention  to  the  management  and  post-
experiment activities which act upon results (such as sharing, describing, storing 
etc.).

2.4. THE EXPERIMENT PROCESS SCRIPT

Each experiment  is  a  process  and  therefore  the  most  important  part  of  the 
experiment plan is its script. 

Experiment script is  a  piece of  program in  a  computer  language (physically 
located in one or more files) that the virtual laboratory execution components are 
able to interpret. The script defines the main steps of experiment process and the 
control  flow  between  those  steps.  It  also  indicates  what  data  is  consumed, 
transformed and produced during the experiment execution. In case of ViroLab 
virtual laboratory, the JRuby programming language is used and augmented with 
a set of functions that are crucial for our approach. For exact list of features and 
further details please consult the API reference in later sections.

As you can see, the virtual laboratory uses a well-known scripting platform which 
immediately provides experiment developers with a considerable set of features 
and libraries. Hence, the first point to note is the possibility to use almost any 
kind of JRuby code within experiments. Apart from control flow statements (such 
as ifs, fors, assignments etc.) that every script supports, the three basic building 
blocks of every experiment are data, activities and results.  

Data is the main substance that an experiment processes. There can be multiple 
types of data sources in an experiment script: local variables and constants, local 
or remote file systems, physical or virtual databases. In all of these cases data is 
imported  into  the  experiment  script  execution  space  and  may  be  analyzed, 
transformed  and  saved.  Detailed  information  on  ViroLab-specific  means  of 
acquiring data is contained in Section 5.2.

Activity is  any  kind  of  act  that  changes  the  internal  state  of  the  executed 
experiment script. Since this state is frequently defined by data, activities most of 
the time act upon experiment data (for analysis, transformation, printing, storage 
etc.)  Basic  (yet  commonplace)  activities  are  provided  within  the  interpreter’s 
standard library. However, more complex tools and services are available remotely 

Virolab Deliverable 3.3 A2 – version 1.0 Page 15 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/RuntimeLibraryReference
http://jruby.org/


as  Grid  Objects.  The  reference  on  how to  access  such  Grid  Objects  from the 
experiment script is in Section 5.3.

Results were already discussed in the previous section.

Samples of various experiment scripts may be found in Section 6.

2.5. GRID OBJECTS ABSTRACTIONS

Let us start the explanation of the idea of abstraction levels for computation description 
with the definition of Grid Object. 

Grid Object is by definition any entity that is accessed remotely from the experiment 
execution  environment  that  provides  computation  abilities  for  the  experiment  (to 
distinguish it from data sources). Examples of such objects: a service that transforms one 
scale of temperature to another, a data classifier component that assigns classes to data 
records according to their features, a dedicated cellular automata that simulates a given 
phenomena and so on. As one may see, there is uncountable amount of possibilities and 
in  order  to  bring  more  order  to  the  matter,  we  introduced  different  Grid  Object 
abstractions.

2.5.1.Explanation of abstraction levels

Figure -3 shows in a simple way different levels of Grid Object abstractions and what 
information is associated with these levels. First of all we have the purely conceptual 
level of  Grid Object Class. The class is used to group all the Grid Objects that have 
similar functionality with regard to their domain operations - this is also called functional 
similarity. By definition every Grid Object that belongs to a certain class exposes exactly 
the same program interface - and the declaration of such an interface is what really 
defines a given class. 

Figure -3: Levels of abstract Grid Object description.

So,  within  its  interface  every  class  defines  a  set  of  one  or  more  Grid  Operations 
(sometimes referred to as Grid Object Operations). Each operation describes what type 
of arguments (or input parameters) it requires and what kind of products (output results) 
it  yields  upon successful  completion.  Such a description of  functionality  is  frequently 
called an operation signature. 

Every Grid Object Class may be realized in a couple of different ways that are called Grid 
Object  Implementations.  Each  implementation,  while  perhaps  using  different 
technological  means,  provides  exactly  the  same  functional  behavior  to  the  external 
world. In terms of programming, we say that every implementation of a given class 
implements or  realizes the  set  of  Grid  Operations  declared  by  that  class.  This  is 
analogous to similar idea from object-oriented programming languages. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 16 of 102



Finally, an implementation of a defined class is not sufficient. In order to have a real Grid 
Object  ready  to  be  invoked,  we  need  a  Grid  Object  Instance.  An  instance  is  an 
implementation that was executed and published so the Grid Object is accessible from 
the network. Such an instance, being a running and operational remote Grid Object, 
could  be  contacted  by  any  experiment  runtime  and  any  Grid  Operation  that  the 
implemented class declares may now be executed on behalf  of  some experiment. Of 
course, there may be multiple instances of the same implementation - then the choice of 
the best one is performed by the Grid Application Optimizer (GrAppO). 

2.5.2.An example

As  an  example  let  us  consider  a  temperature  service that  retrieves  current  air 
temperature in designated area (through a weather station's webpage report). We'll set 
up a Grid Object Class called  currentAirTemperature - the class will  declare two Grid 
Operations that we have designed, called currentAirTemp and kelvinToCelcius. 

Now, we have decided to implement the tool as a Web Service, so name our new Grid 
Object  Implementation  temperatureJavaWebService.  When  later  on  we  decide  to 
implement this class in another technology (for instance as a Web Service in another 
framework,  or  as  a  MOCCA  component)  we  will  publish  that  implementation  with  a 
different name. 

Finally,  no  doubt  we  have  published  our  implementation  as  a  physical,  remotely 
accessible Web Service endpoint using some available web server. This concrete endpoint 
that could be called from outside is ours first Grid Object Instance. Since we are able to 
deploy the same implementation in several different location, there could be more then 
one instance.

More information on how to browse the current set of available Grid Objects and how to 
publish your own Grid Object to the ViroLab community, please see Section 4.

2.6. FUNCTION OF THE EXPERIMENT REPOSITORY

The purpose of the Experiment Repository within the ViroLab Virtual Laboratory 
is  to  store  and  provide  experiment  plans  that  are  developed  by  experiment 
developers and that are used by experiment users. From this perspective the 
repository plays a meeting place for these two groups of users of the laboratory - 
they share among themselves the experiment plans. 

Figure -4: Experiment plan being conceived, shared and developed.

Virolab Deliverable 3.3 A2 – version 1.0 Page 17 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab


Usually, a typical life cycle of an experiment plan involves: 

• initial conception and establishment of a new experiment plan 

• shared, cooperative development of the plan by developers 

• first release of the plan 

• first uses (executions) of the plan by users 

• gathering feedback and identifying shortcomings 

• further refinement, next version releases 

• and so on and so forth... 

The Figure -4 shows us the first stages of this process. One developer gets a new 
idea about some exciting experiment that could be developed. She puts those 
initial thoughts in form of a sketch of an experiment script and shares that with 
fellow  developers  through  the  Experiment  Repository.  In  terms  of  software 
engineering this activity of experiment sharing is referred to as initial import. 

After that another experiment developer, interested in similar ideas, loads the 
experiment plan (in cooperative development this is usually called checkout) to 
his development environment and contributes his effort to make the experiment 
better. The new changes and additions are shared with the community through a 
commit operation that essentially synchronizes the content of the repository with 
the latest form of experiment developed by the given developer. 

At this early stage of experiment planning, the plan in its current form is only 
stored in so-called development section of the repository. At the moment no user 
is able to obtain and execute this experiment - as it is assumed to be not mature 
enough. 

Figure -5: The process of releasing and using experiment plan.

After  a  certain  amount  of  time  and some effort  put  in  the  experiment  plan 
development,  one  of  its  developers  may  decide  to  release  a  version  of  the 
experiment plan (see  Figure -5). Such publication yields a copy of the current 
state of the plan in a dedicated space of the Experiment Repository. The two 

Virolab Deliverable 3.3 A2 – version 1.0 Page 18 of 102



important  features  of  the  releases  space  (in  comparison  to  the  development 
space) are: it is accessible by experiment users and the releases put there are 
frozen with respect to further changes. 

The  tool  provided  for  the  experiment  user  is  now able  to  see  the  released 
versions of experiments and also, on request, is able to download a designated 
version of given experiment plan. The plan, using the functionality of the tool, 
could be now executed and the user may obtain results. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 19 of 102



3. EXPERIMENT PLANNING ENVIRONMENT USER’S MANUAL

The  ViroLab  Experiment  Planning  Environment  (EPE)  is  a  tool  for  managing 
experiment development process.  Beside the ViroLab Portal,  EPE is  the main 
component of the ViroLab presantation layer.

The  main  idea  is  to  provide  experiment  developers  with  powerful  Virtual 
Laboratory  experiment  editor  for  creating  experiment  plans  in  an  easy  way. 
Beside the most important scripting capabilities, EPE offers : 

• storing experiments locally using workspaces mechanism, 

• sharing  experiments  with  other  experiment  developers  using  the 
Experiment Reposiotory, 

• releasing a new version of an experiment so the scientists may use it with 
their tools, 

• executing experiment plans using GridSpace Engine.

However ViroLab EPE is not limited to these functionalities. Due to the fact that it 
is based on the Eclipse Rich Client Platform (RCP) ViroLab EPE can be extended 
by wrapping new functionality with an Eclipse plugin and plug it into EPE. For the 
description of a set of ViroLab-dedicated plugins supplied with this prototype, see 
Section 3.2. 

3.1. EXPERIMENT PLANNING ENVIRONMENT

3.1.1.Installation and Configuration

This manual is written for the latest EPE versions: 0.2.4 and 0.2.4.x.

Installation 

Prerequisites

• Java Runtime JRE 1.5 (or higher), java executable needs to be in the 
PATH environment variable 

Installation steps for Linux 

• Download the archive containing ViroLabEPE release: ViroLabEPE-<ver-
sion>.tar.gz from ViroLab EPE download page (http://gforge.-
cyfronet.pl/frs/?group_id=38&release_id=53)

• Extract the content of the archive:
tar zxvf ViroLabEPE-<version>.tar.gz

               or if you downloaded the .zip version of the archive: 
  unzip ViroLabEPE-<version>.zip

Installation steps for Windows XP/Vista

• Download the archive containing ViroLabEPE release: ViroLabEPE-<ver-
sion>.zip from ViroLab EPE download page (http://gforge.cyfronet.-
pl/frs/?group_id=38&release_id=53)

Virolab Deliverable 3.3 A2 – version 1.0 Page 20 of 102



• Extract the content of the archive by clicking right mouse button on the 
archive, selecting "Extract files..." and following the wizard steps

Running

On  either  OS  Linux  or  Windows,  to  run  ViroLab  EPE  click  on  virolabEPE 
executable file, which is placed in ViroLab EPE root directory. 

Configuration

This  part  contains  step-by-step  guide  to  set  up  GSEngine  as  the  default 
experiment plan interpreter in EPE. For more information about EPE configuration 
options  please  visit  ViroLab  EPE  User  manual  page 
(http://virolab.cyfronet.pl/trac/vlvl/wiki/EpeManual).

The  following  instructions  describe  how  to  set  up  GSEngine  as  the  default 
experiment plan interpreter in EPE:

1. Open ViroLab EPE. Go to Window -> Preferences. 

Figure -6: Selecting the Window -> Preferences menu option

Virolab Deliverable 3.3 A2 – version 1.0 Page 21 of 102



 

2. Select Experiment -> Installed Interpreters preferences page.

Figure -7: The Installed Interpreters properties page

3. Click "Add" button. Enter whatever you like for the "Interpreter Name" 
(e.g.  GSEngine).  For  the  "Location"  enter  a  path  to  the  gsengine 
executable  (e.g.  "C:\gsengine\gsengine.bat"  on  Windows  or 
"/home/user/gsengine/gsengine" on Linux) or click "Browse..." to find the 
executable easily. Click "OK". 

Virolab Deliverable 3.3 A2 – version 1.0 Page 22 of 102



Figure -8: Adding new interpreter through the Add interpreter dialog

4. You  should  now  see  a  new  entry,  which  describes  GSEngine  as  an 
experiment  plan  interpreter.  To  set  it  as  the  default experiment  plan 
interpreter  in  EPE  tick  a  checkbutton,  which  is  placed  next  to  the 
interpreter name you have provided.

Virolab Deliverable 3.3 A2 – version 1.0 Page 23 of 102



Figure -9: Setting the newly added interpreter as default for every new projects

Congratulations! Now you can use GSEngine to execute experiment plans.

In some cases (e.g. executing experiment plan using a different interpreter) it 
may be  necessary  to  change interpreter  manually.  The  following  instructions 
describe how to do it : 

1. Select Run -> Run... menu item. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 24 of 102



Figure -10: Selecting the Run -> Run… menu option

 

2. Choose experiment configuration, go to  Environment -> Interpreter tab 
and select GSEngine.

Virolab Deliverable 3.3 A2 – version 1.0 Page 25 of 102



Figure -11: Changing the interpreter that is used for running this particular experiment

Comments 

If  you have any comments  or  critical  remarks  related to  this  manual  please 
contact us. We would be grateful. 

Dariusz Król dkrol AT student DOT agh DOT edu DOT pl 

Piotr Pęgiel barca AT wp DOT pl

3.1.2.Usage

Introduction

This manual is based on the ViroLabEPE-0.2.4, which is available for both Linux 
and MS Windows OS. It is intended generally for everyone who participates in 
creating ViroLab applications using ViroLab EPE (e.g. experiment developers).

Virolab Deliverable 3.3 A2 – version 1.0 Page 26 of 102



EPE is a tool that makes the development of experiments much easier. In order 
to  achieve  that,  EPE  provides  support  for  most  of  the  typical  actions  in  an 
experiment development process, such as: 

• creating new experiments with a proper structure 

• sharing experiments using the Experiment Repository 

• running experiment plans using a runtime system (e.g. GSEngine) 

• releasing new versions  of  an  experiment  directly  to  the  Experiment 
Repository 

• providing relevant information about computational resources using the 
Grid Resource Registry plugin 

• browsing ontologies using the Ontology Browser plugin.

Due to being based on the Eclipse RCP platform (for more information, please 
see  the  next  section  or  visit  RCP  web  page - 
http://www.eclipse.org/home/categories/rcp.php),  EPE  looks  similar  to  the 
Eclipse IDE. Thus everyone, who is familiar with the Eclipse IDE, will have no 
problem with using EPE. 

The  following  sections  of  the  manual,  firstly  describe  the  Eclipse  Rich  Client 
Platform (RCP) in order to familiarize you with the EPE architecture background. 
Secondly, there will be shown how to perform the above-mentioned actions. 

Eclipse Rich Client Platform (RCP) 

The core of the  ViroLab Experiment Planning Environment is based on Eclipse 
Rich Client Platform. It is a part of the Eclipse project created to simplify the 
process of developing a Rich Client Application. In short, the RCP is a subset of 
the Eclipse platform plugins (Figure 3-7), which enables developing Rich Client 
Applications. 

This framework extends the plugin development process for Eclipse and allows 
developers to create a standalone application with the core Eclipse functionality. 
Therefore, after creating a plugin for Eclipse, there is no need to redesign it at a 
later stage. This plugin can be used in the RCP environment such as the EPE. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 27 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab


Figure -12: Eclipse Rich Client Platform (RCP) 

The modular EPE architecture enables to extend the EPE by writing new plugins 
which  provide  new  functionalities,  and  plug  them  into  the  EPE  (for  more 
information about writing plugins please check Section 3.2). 

EPE main window

On having started EPE, the first screen you see is the Welcome screen, which is 
presented and described in Figure 3-8. 

Figure -13: EPE welcome screen 

Virolab Deliverable 3.3 A2 – version 1.0 Page 28 of 102



The  Welcome screen provides  an  easy  way  to  start  work  with  the  EPE.  By 
choosing different icons you can : 

• create a new experiment 

• import an experiment from the Experiment Repository 

• go to either ViroLab or EPE web page 

• go to the workbench. 

Create the new experiment

Creating  a  new  Experiment  in  ViroLab EPE  is  one  of  the  most  important 
functionality  –  it  helps  the  user  create  a  complete  Experiment  Project.  
This process is quite simple – it is implemented as a wizard. To open the wizard, 
you should select one of the following options: 

• the  first  option  (“Click  here  to  create  a  new  experiment”)  from  the 
Welcome screen 

• the “New experiment” icon from the toolbar (the Experiment perspective) 

• File -> New -> New Experiment option from menu 

After choosing one of these ways, the new experiment wizard opens the window 
shown in Figure 3-9. 

Figure -14: New experiment wizard 

Virolab Deliverable 3.3 A2 – version 1.0 Page 29 of 102



There are three information categories you have to provide in order to complete 
the wizard : 

• information  about  the  experiment,  like  an  experiment  name  and 
description, author contact info and organization, they are important due 
to feedback and organizational matters 

• path to the place where the experiment project will be stored 

• information about the experiment project license. At the moment there are 
three options available:

o default ViroLab experiment license – based on the MIT license 

o blank license – which should be filled by the experiment developer 

o URL to the license – no experiment license file is created. 

After accepting provided information, by clicking on the Finish button, a new 
experiment project is created. In most cases, ViroLab Experiment will consist of 
(of course it may be extended in the future by new data): 

• plan source files (GScript sources) – in the experiment src directory, 

• license file – if created there should be ExperimentLicense.txt file in the 
experiment project main directory, 

• an  experiment  meta-information  file  -  experiment.xml –  will  contain 
information  provided  be  the  wizard  (like  the  user  who  creates  the 
experiment, a description of experiment), 

• feedback file – contains information provided by ViroLab Portal from the 
experiment users. 

Share local experiments

Storing an experiment to the repository is needed if the experiment is intended 
to  be  run  by  scientists  (they  simply  could  not  use  Experiment  Planning 
Environment) or by other developers. The second reason is the situation when 
two or more developers are working simultaneously on the same Experiment. 
These are very common situations that occur in real life – when working, e.g., on 
Java, Ruby or C# project. Since many developers got used to version controlling 
systems (e.g. CVS), the ViroLab Experiment Repository will exploit one of the 
most  known  systems  –  SubVersion  (SVN).  It  keeps  track  of  all  work  over 
experiments  and  allows  several  (potentially  widely  separated)  developers  to 
collaborate. 

To start the “Share an experiment” wizard, you should open a popup menu with 
mouse right-click on the experiment name and select Team -> Share experiment 
option. If you have connected to the Experiment Repository before, you would 
see a wizard page similar to the one presented in Figure 3-10 (the one at the 
top). There is a table with experiment repository locations that you are already 
connected to.

Virolab Deliverable 3.3 A2 – version 1.0 Page 30 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/ViroLab


If this is the first time you connect to the Experiment Repository, you should be 
able to see a wizard page similar to the one presented in Figure 3-10 (the one at 
the bottom). You will see this page also, if you have connected to the Experiment 
Repository before but on the wizard page, which was described above, you select 
the “Create a new repository location” radio button. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 31 of 102



Virolab Deliverable 3.3 A2 – version 1.0 Page 32 of 102



Figure -15: Share an experiment wizard – select the repository location pages (left – selecting the 
repository location page, right – creating a new repository location page) 

In order to complete the wizard, the user has to provide information about a 
repository location (the default location has been added already to the list) and 
authentication info (a user name and a password are available at this time). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 33 of 102



Optionally, you can provide label which will be used instead of a repository URL. 
There is also an option to store your authentication info locally, thus you do not 
need to provide it whenever you connect to the repository.

After  choosing  the  repository  location  step  you  can  either  start  sending  an 
experiment to the repository, by clicking the “Finish” button, or go to the next 
page, by clicking the “Next” button. 

There are two more pages to complete if you choose the “Next” button. The first 
one is about the label of the experiment, which will be used on the repository 
side (Figures 3-11, the one at the top). The second one is about comments you 
may want to add to the first revision of the experiment (Figures 3-11, the one at 
the bottom). At any time you may start sending an experiment to the repository, 
by  clicking  the  “Finish”  button  or  cancel  the  whole  process  by  clicking  the 
“Cancel” button. 

Figure -16: Changing the label of the experiment page and adding a revision comment page (left 
– choosing an experiment label, right – adding a comment to the experiment revision)

After clicking the “Finish” button eventually, the experiment sending process is 
about to begin but before it starts there is the last step you have to perform. In 
some situations you may not want to send the whole experiment project to the 
repository (e.g. some files are created locally during runtime and it does not 
make sense to share them). A simple dialog (presented in Figure 3-12) enables 
users to select the resources, which will actually be sent to the repository. By 
default, all files are selected. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 34 of 102



Figure -17: Selecting the resources page 

After this step is completed, a proper structure of the experiment project will be 
created on the repository side and all selected resources will be placed on the 
repository. If any problems occur, you will be informed by an error dialog.

After sharing an experiment, you are able to perform some team operations on 
the experiment. They are accessible through the popup menu (mouse right-click 
on the experiment name) -> Team. The common team actions are: 

• Synchronize with Repository – show differences between the local and the 
repository version of the experiment 

• Commit – update the experiment with changes, which were made locally, 
on the repository side 

• Update – retrieving all changes from the repository 

• New  Release –  prepare  a  new  release  of  the  experiment  (it  will  be 
described later) 

Import an experiment from the Experiment Repository

If someone has stored some experiments to the Experiment Repository you can 
easily import them using ViroLab EPE. It is a common situation that occurs when 
e.g. a few developers work on the same experiment. 

The “Import an experiment” operation is implemented as a wizard in order to 
make it  as user friendly as possible. You can start it by choosing one of the 
following options : 

• click the second position from the Welcome screen (“Click here to import 
an experiment from the Experiment Repository”) 

Virolab Deliverable 3.3 A2 – version 1.0 Page 35 of 102



• click  the  “Import  an  experiment  from the  Experiment  Repository”  icon 
from the EPE toolbar 

• File -> New -> Other (or mouse right-click and select “New -> Other“ from 
the popup menu) and from the tree viewer select Experiment -> Import 
Experiment from Experiment Repository 

• File -> Import (or mouse right-click and select “Import” from the popup 
menu),  from the  tree  viewer  select  Team -> Import  Experiment  from 
Experiment Repository 

After  choosing  one  of  these  ways,  the  “import  an  experiment  from  the 
Experiment  Repository”  wizard  opens.  It  is  the  same  wizard  you  use  when 
sharing an experiment (please see the previous section for details). 

Figure -18: “Import an experiment” wizard 

As you can see in Figure 3-13, in order to download an experiment from the 
Experiment Repository the user has to provide information about the repository 
location  (the  default  location  has  been  added  already  to  the  list)  and 
authentication info (a user name and a password are available at this time). 
Optionally, you can provide a label which will be used instead of a repository 
URL. There is also an option to store your authentication info locally, thus you do 
not  need  to  provide  it  whenever  you  connect  to  the  repository.
On having completed the wizard page, please click the “Next” button to connect 
to the Experiment Repository. If everything goes right you should see a page 
with an experiment chooser, similar to the one presented in Figure 3-14. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 36 of 102



Figure -19: Experiment chooser 

On this page you can select an experiment you want to download. As you may 
already  know  (if  not,  please  visit  the  Experiment  Repository  web  page  - 
http://virolab.cyfronet.pl/trac/vlvl/wiki/ExperimentRepository),  an 
experiment has two development stages: development and release and both of 
them are supported by the repository. By default, by clicking on an experiment 
name, the development branch is downloaded. 

After having selected the experiment, click on the “Finish” button to accept your 
choice. The next screen you see should be similar to the one presented in Figure 
3-15. You can change the name, which the experiment will be stored with.

Virolab Deliverable 3.3 A2 – version 1.0 Page 37 of 102



Figure -20: Renaming an experiment before downloading 

After that you can, except of canceling the whole process, click either on the 
“Finish” button to download the experiment eventually or on the “Next” button to 
go to the next page (Figure 3-16). It is used to change the location of the place, 
where the experiment is actually stored. You can also select the working set for 
the experiment, which is a mechanism for grouping projects. This can be a very 
helpful feature, especially when you have many non-related experiments in the 
workspace.  By using working sets you are able to  organize them into a few 
categories without moving them to different workspaces. 

Figure -21: Changing location of the experiment project 

Virolab Deliverable 3.3 A2 – version 1.0 Page 38 of 102



After downloading an experiment you are able to perform team actions on the 
experiment. It is the same set of operations, which was described above in the 
“Share local experiments” section. 

Release a new version of an experiment

As mentioned above, there are two stages of the experiment developing process: 
development and release. The Development branch of an experiment represents 
an unstable and untested experiment version, thus nobody should use it  but 
developers. After a certain amount of time, it may, however, be decided that the 
experiment is stable and it is possible to create a release of the experiment. 
Releasing a version of the experiment is the only way to present the experiment 
in ViroLab portal.

The “release a version of the experiment” action is implemented as a wizard, like 
most of the common actions in EPE. The wizard is activated after selecting “Team 
-> New Release…” option from the experiment popup menu (mouse right-click on 
the experiment name). The wizard is very simple, the only thing you have to 
provide  is  a  version  number  (or  name)  of  the  experiment  (Figure  3-17). 
Optionally, you can add a release comment in the text area. 

Figure -22: Release a version of an experiment 

After clicking the “OK” button, a new release of the experiment will be added to 
the  Experiment  Repository,  therefore  it  gets  visible  for  the  users  of  ViroLab 
portal. 

3.1.3.Source  Code  Access,  Bug  Reporting  and  Authors  Contact 
Information

The entire source code of EPE is accessible through the Subversion repository 
(the anonymouns read-only access is granted for everyone):

#> svn checkout https://gforge.cyfronet.pl/svn/epe 

Virolab Deliverable 3.3 A2 – version 1.0 Page 39 of 102



Should you find any bugs, missing functionality or you’d like to have some nice 
new features  implemented,  please  use  the  ticket  emission  and  management 
system on the Trac website of EPE:

• Viewing tickets: http://virolab.cyfronet.pl/trac/epe/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/epe/newticket

You do not need any account for that, tickets could be submitted anonymously.

Authors list: Dariusz Król, Piotr Pęgiel, Włodzimierz Funika.

Developers team contact person: Dariusz Król [dkrol@student.agh.edu.pl].

3.2. EXPERIMENT PLANNING PLUG-INS

3.2.1.Installation

ViroLab  EPE plugins  is  a  set  of  Eclipse  plugins  packaged  as  features.  These 
features  are  hosted  on  a  specialized  website  (called  update  site)  which  is 
accessed by Eclipse's update manager. 

The following instructions describe how to install ViroLab EPE plugins via Eclipse's 
update manager: 

1. Open Eclipse. Go to Help -> Software Updates -> Find and Install. 

2. Select "Search for new features to install". Click "Next". 

3. Click  "New Remote Site". Enter  "ViroLab  plugins  updatesite" for  the 
Name and "http://virolab.cyfronet.pl/epe/plugins" for the URL. 

4. Click “OK”

5. You should now see a new entry name "ViroLab plugins updatesite" with a 
mark next to it (see Figure -1). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 40 of 102

http://virolab.cyfronet.pl/trac/vlruntime/newticket
http://virolab.cyfronet.pl/trac/vlruntime/report


Figure -23: EPE update sites manager window.

6. Click on that and select plugin (plugins) you want to install. Click "Next". 

• You may see a warning when you try to install  plugins that require 
other, not yet installed (or outdated) plugins. In order to check also the 
other, required plugins please click the "Select required" button. 

7. Read the license (usually it's GPL) and, if you agree with its terms, tick the 
"I accept..." box and click "Next". 

8. Select or add the appropriate site to install the features (most of the cases 
you just accept the default). Click "Finish". 

9. Click  "Install" (or  "Install All") on the warning dialogs during feature 
verification (the features are not digitally signed). 

10. After successfully downloading and installing the features click  "Yes" on 
the "Would you like to restart now?" dialog. 

Congratulations. You have made it! 

3.2.2.Virtual Organization Configuration Plug-in

Virolab Deliverable 3.3 A2 – version 1.0 Page 41 of 102



This tutorial shows how to configure Experiment Planning Environment (EPE) to 
use properties specific for concrete Virtual Organization. It assumes you have 
already installed the plugin (see previous Section) inside your EPE. 

For plugin version: 0.2.1 

VO  Configuration  EPE  Plug-in  is  responsible  for  storing  virtual  organization 
properties.  It  loads  these  properties  from  external  properties  file.  These 
properties are used by other EPE plug-ins: 

• Grid  Resources  Browser  plug-in  receives  default  Grid  Resources 
Registry endpoint 

• Ontology  Browser  plug-in  receives  default  Domain  Ontology  Store 
endpoint 

• Evaluation Request Builder receives VO properties necessary to create 
an  Evaluation  Request  document  (for  more  info  about  Evaluation 
Request please see the  GridSpace Experiment User Manual Section in 
Experiment Users' Manual).

To  open VO properties  page  click  "Window->Preferences"  (Figure  -24)  which 
opens preferences pages dialog. 

Figure -24: Opening properties pages.

Click "VO Configuration" from list (Figure -25). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 42 of 102



Figure -25: Virtual Organization properties page.

Using  "VO  Configuration"  properties  page  user  can  select  URL  where  virtual 
organization  properties  are  stored.  What  is  more  there  are  two  groups  of 
functional buttons. 

• First one doesn't close properties pages dialog: 

o Refresh: reload VO configurations 

o Restore Defaults:  set default  location of  VO properties file  (VO 
properties will not be loaded until user click Refresh or OK button) 

o Apply: apply all changes 

• The second one does: 

o OK: apply all changes and close properties pages dialog. 

o Cancel:  cancel  all  unsaved  changes  and  close  properties  pages 
dialog. 

3.2.3.Resources Browser Plug-in

his tutorial shows how to configure and use Grid Resources Browser plug-in. It 
assumes you have already installed the plug-in inside your EPE (see Section 
3.2.1). 

For plugin version: 0.2.3 

Virolab Deliverable 3.3 A2 – version 1.0 Page 43 of 102



3.2.3.1.Configuring Grid Resources Registry browser

Grid  Resources  plug-in  is  able  to  present,  in  user-friendly  way,  resources 
registered inside Grid Resources Registry. What is more, it  is  able to browse 
more than one registry at the same time. To configure registries that browser 
should browse dedicated properties page is created. To open this preferences 
page click Window->Preferences (see Figure -26). 

Figure -26: Opening properties pages.

After that preferences pages dialog is opened. Expand "VO Configuration" node 
from the list and select "Registry Entries" (see Figure -27). 

Figure -27: Grid Resources Registry properties page.

By the default Grid Resources Registries defined in virtual organization properties 
are added and user is able to add additional registries endpoints. There are two 
different colors that presents registries from VO and user defined (see  Figure
-28). User is able to add, edit or removed user-defined registries, but he or she 

Virolab Deliverable 3.3 A2 – version 1.0 Page 44 of 102



is not able to remove registry defined in VO (this registry can be only disabled by 
switching check box off). 

Figure -28: User defined Grid Resources Registries entries.

These properties page contains three groups of buttons: 

• the first one that allows to manage registries entries: 

o Add add new registry entry  (user  defines  registry  name and its 
endpoint) 

o Edit edit  selected  registry  entry  (if  more  than  one  entries  is 
selected,  the  first  one  is  chosen).  Editing  VO  defined  registries 
entries (this with gray background) is not allowed 

o Remove remove  selected  entry(ies).  Similar  to  Edit button 
registries entries defined by VO are not allowed to be removed. 

• the second one: 

o Restore Defaults remove all  registries added by the user (only 
registries defined by VO stayed) 

o Apply save all changes 

• the third one that closes properties pages dialog: 

o OK save all changes and close properties pages dialog 

o Cancel cancel  all  unsaved  changes  and  close  properties  pages 
dialog 

When user saves changes, Grid Resources browser is refreshed. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 45 of 102



3.2.3.2.Opening Grid Resources Registry browser

To open Grid Resources browser please click Window->Show View->Other... 
(see  Figure -29) then find and expand  Grid Resources Registry node, select 
Resources Browser and click OK button (see Figure -30). After view is opened, 
it  stays  active  even  between  stopping  and  starting  EPE  again  (unless  you 
definitely close Grid Resources browser by yourself). 

Figure -29: Opening available views browser.

Figure -30: Opening Grid Resources Registry brower.

3.2.3.3.Browsing Grid Resources Registry

Before going into detail user should be familiar with three resources description 
layers  paradigm  (see  the  online  Grid  Object  Abstractions  tutorial  - 
http://virolab.cyfronet.pl/trac/vlvl/wiki/GridObjectAbstractions). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 46 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/GridObjectAbstractions


Figure -31 presents Grid Resources Registry browser. Browser is able to connect 
to remote Grid Resources Registry (or more than one registries) and presents 
resources stored in it. The highest layer of resources description (technological 
independent) is Grid Objects. Grid Objects are grouped in packages (this idea is 
similar to java interfaces and packages). Every Grid Object has operations with 
input  and  output  parameters.  Browsing  this  layer  is  enough  to  write  full 
functional  experiment  (gsnegine  takes  care  of  choosing  the  most  optimal 
technology and resource instance) but if user wants to take more control during 
creating  script,  he  or  she  is  able  to  browse  information  about  existing 
technologies and instances of Grid Object. 

During script development information inside registry(ies) can hanged (e.g. you 
ask developer to create and register a new gem), that is why refresh button is 
available in resources browser. 

To manage resources browser window there is minimalize, maximalize and close 
button. 

Figure -31: Browsing Grid Resources Registry.

Browsing Grid Object and its operation is not enough to create experiment script 
in easy and user friendly way. That is why every operation and its input and 
output  parameters  should  be  described  in  understandable  way.  Resources 
browser allows to present this information to the user. If you move cursor on the 
operation, in short delay pop-up with description is shown (see Figure -32). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 47 of 102



Figure -32: Grid Resources Registry browser pop-up.

Every  element  shown in  resources  browser  can  have  context  menu.  Context 
menu items can be different for Grid Object, operations, etc. (see  Figure -33). 
Currently there are available following context items for: 

• Grid Object - inserting code line to script editor that create selected Grid 
Object. 

• Grid  Object  Operation -  show input  or  output  parameters  meaning  in 
ontology browser. 

Context  menu  items  can  be  dynamically  added  to  resources  browser  by 
implementing  'ICtxMenuItemsProvider'  interface  (for  further  details  see 
[RESBROWDEV])

Figure -33: Grid Resources Registry browser context menu.

3.2.3.4.Inserting code line to EPE experiment editor 

Resources registry allows user to add creating Grid Object code line to script 
editor in two ways: by double click on Grid Object or by choosing correct context 
menu item (see Figure -34 and Figure -35). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 48 of 102



Figure -34: Inserting code line to EPE experiment editor.

Virolab Deliverable 3.3 A2 – version 1.0 Page 49 of 102



Figure -35: Code line inserted to EPE experiment editor.

3.2.3.5.Interaction  between  Grid  Resources  Registry  browser  and 
Ontology browser plug-ins

This  paragraph  presents  interaction  between  Grid  Resources  Registry 
browser and Ontology browser plug-in. 

From GRR browser to Ontology browser

Every  input  and  output  parameter  can  have  ontology  meaning  that  can  be 
presented in Ontology browser plug-in.  To open ontology parameter meaning 
you have to chose correct context menu item – “Open Ontology Browser on ...” 
(see Figure -36 and Figure -37). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 50 of 102



Figure -36: Show resource in Ontology browser.

Figure -37: Show resource in Ontology browser result.

Semantic search in Grid Resources Registry browser

There is possibility to find all operations that have input or output parameters 
that fulfill ontology meaning. For more information how to switch from Ontology 
Browser to Grid Resources Browser plug-in see the Ontology Browser plug-in 
manual in the following Section. Figure -38 presents result of semantic search of 
operation that has input parameters with “Aminoacid Mutation” meanings. As you 
can see there are only this Grid Object and operation that fulfill this query. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 51 of 102



Figure -38: Semantic search

User can be interested in browsing packages of found Grid Object. That is why 
there is a possibility to show found Grid Object (and other found elements) in 
resources  browser.  To  show found  Grid  Object  or  its  operation  in  resources 
browser user should choose Show in Resources Browser context menu item (see 
Figure -39). After that resources tree is expanded to selected item (see Figure
-40). 

Figure -39: Semantic search context menu

Virolab Deliverable 3.3 A2 – version 1.0 Page 52 of 102



Figure -40: Show semantic search result in Grid Resources Registry browser.

3.2.4.Ontology Browser Plug-in

This manual shows how to operate the  Ontology Browser Plugin in order to 
use its functionality for experiment development inside the Experiment Planning 
Environment (EPE). It assumes you have already installed the plugin inside your 
EPE (see Section 3.2.1). 

For plugin version: 0.1.2 

Configuration

Currently there is neither need nor any possibility to configure the plugin. In the 
future releases we plan to add configuration for another Domain Ontology Store 
and some further options connected to the method of  viewing and using the 
ontological taxonomies. 

Opening

After successful  installation, in order to invoke the Ontology Browser view to 
your EPE workspace, please: 

• choose Window -> Show View -> Other... from the main upper menu 

• find  Ontology  Browser section  and  double-click  on  the  Ontology 
Browser view inside that section 

When you do that  once the view will  always stay active within  your  current 
perspective  and  you  don't  have  to  repeat  this  procedure  after  you 
shutdown/reopen EPE (unless,  of  course,  you deliberately  close the Ontology 
Browser view yourself). 

The Ontology Browser view window

Virolab Deliverable 3.3 A2 – version 1.0 Page 53 of 102



Figure -41: The main Ontology Browser panel.

As you may see in Figure -41 the main window (and, for now, the only window) 
of the plugin is split into a bunch of subparts. What could be accomplished with 
the controls is given in the later sections of this manual - here we only briefly 
describe those parts. 

The  Model section shows what is the name if the currently loaded model and 
allows to reload the model. It also allows to change the model to something else 
and to load that one instead. 

The  second  section  from  the  top  is  about  Ontology  Browser  searching 
capabilities.  Currently  the  content  of  the  section  is  constant  and  the  its 
functionality  regards  searching  for  Grid  Objects  that  have  specific  Grid 
Operations. These are operational only when another accompanying plugin, the 
Resources Browser, is also present in the environment. 

The main section is the Taxonomy panel and it shows in the form of a graph the 
taxonomy of the currently loaded model. The panel is also clickable and the most 
important actions are actually fired through this panel. 

Brief introduction to models and taxonomies

Before we go into details of possible actions we present a short explanations of 
the most important terms from the field of ontologies. This is by no means a 
thorough or a complete tutorial on these matters, just a survival guide to make 
sure you get the grasp of the things we talk about later. Hence, we strongly 
encourage you to do more reading about ontologies, taxonomies, models and 
description logic on your own. 

In this tutorial, a  model is a list of statements (facts) that define the set of 
entities (objects, concepts) and the relations (predicates). Every statement is a 

Virolab Deliverable 3.3 A2 – version 1.0 Page 54 of 102



simple triple of <subject, predicate, object> and could be easily and naturally 
visualized as a directed graph arc going from a concept in the role of subject to 
the (usually different) concept in the role of object with the label (type) of the 
arc denoting the predicate. 

As a single concept may be a subject (or object) of many such statement, the 
entire model immediately forms a kind of network, where the concepts are nodes 
of  the  network  and  the  relations  are  connections.  Such  a  network  is  (in 
somewhat informal way) called a  taxonomy. Most of the taxonomies could be 
visualized as a graph where nodes (concepts) become vertices and connections 
(relations) become directed arcs. In fact, such a visualization is presented to you 
by the Taxonomy panel of the Ontology Browser. 

Theoretically ontological models (and their taxonomies) may represent anything. 
In the case of our plugin, they represent a part of knowledge from the chosen 
domain of science. They model concepts and relations that are frequently used in 
the domain's terminology. In fact, one of the main functions of these models is 
to  form  a  kind  of  bridge  between  scientists  of  that  domain  and  the  virtual 
laboratory  infrastructure:  they  allow  higher  level  of  the  human-to-computer 
understanding. 

Basic operations.

Changing and reloading model.

The taxonomical models that are presented by the Ontology Browser are stored 
inside a special repository called the Domain Ontology Store. The repository is 
a remote http-protocol service accessible from anywhere around the world - the 
plugin  simply  loads  the  models  on  demand  from  that  source.  In  order  to 
distinguish between the models they have descriptive names and the name of 
the currently  loaded model  is  given in  the  Model  section.  The default  model 
loaded for the first time when you open the Ontology Browser view should be the 
Data model. 

In order to load a different model just choose a different model name in the 
drop-down edit box with the model name. The model is instantly loaded into the 
browser  when you click your choice.  For  instance,  if  you choose to  load the 
Activity model, after a second or two of delay the Taxonomy panel will change to 
the new model (it is possible that this one is empty - it simply means that there 
are no statements in this model). To go back to the Data model please use the 
same mechanism. 

If you want to just to reload the present model (e.g. when you know there are 
some changes made to it) just press the  Reload button in the  Model section. 
Apart from the reload of the taxonomy this may also change the content of the 
Taxonomy panel since even if there are no changes the layouting mechanism for 
the graph is not deterministic and may produce a different-looking taxonomy 
(don't worry - still, this is exactly the same taxonomy, just some things could be 
relocated in the panel).  As you see, you may also use this button when the 
taxonomy gets too cluttered. 

Viewing the model taxonomy.

Virolab Deliverable 3.3 A2 – version 1.0 Page 55 of 102



There are a couple of basic actions that you can do with the Taxonomy panel to 
browse the model: 

• zooming in/out: please use the scroll button of your mouse to make the 
graph larger or smaller, 

• moving around: click the left mouse button on a place where there are no 
concepts and drag the mouse while holding the button, 

• rotating: SHIFT-click the left mouse button on a place where there are no 
concepts and drag the mouse while holding the button, 

• more information: click the right mouse button on a concept to learn more 
about it (currently nothing more then the full id of the concept is given). 

Searching for Grid Operations.

First of all for this functionality you need to install the Resources Browser as 
well (see previous Sections). You don't need to have the Resources Browser view 
opened  for  the  feature  described  below -  just  make  sure  that  the  plugin  is 
installed. 

As you'll find described in the Resources Browser manual, the Grid Objects (that 
are important building blocks of many experiments) have Grid Operations (just 
like  objects  in  object-oriented  programming  languages  have  methods).  The 
operations  may  have  input  and  output  parameters  and  some  of  them  (not 
necessarily all of them) may have semantic meanings. 

Semantic meaning is  a  piece of  meta information that  could be attached to 
virtually anything that is identifiable. It tells both artificial systems and human 
users what is the real-world meaning of this particular object, usually in the terms 
of some specific  domain of human knowledge. For instance, a simple string of 
letters  “CCTCAAATCACTCTTTGGCAAC” could  have  a  semantic  meaning  of 
“nucleotide sequence”. This mechanism is usually used in computer systems to 
improve the common understanding between the system of its human users.

The  searching  capability  allows  to  find  registered  Grid  Operations  that  have 
parameters with semantic meanings similar to a concept from the taxonomy (an 
example is  given below).  There are three modes of  operation here activated 
through the Grid Operations search section. When you switch to another model a 
short information on how to use it appears in the same section, just below the 
choices. The modes allow you to search for: 

• Grid Operations that have at least one input parameter with the semantic 
meaning equal to the chosen concept 

• Grid Operations that have at least one output parameter with the semantic 
meaning equal to the chosen concept 

• Grid Operations that have at least one input and one output parameters 
with their semantic meanings equal to the indicated pair of concepts 

Virolab Deliverable 3.3 A2 – version 1.0 Page 56 of 102



Figure -42: The search result view that appears after successful Grid Operation search action.

Example. I have acquired a couple of nucleotide sequences and I’m 
interested in the Grid Objects that are able to analyze them. My first 
try  will  be  to  find  all  the  operations  that  accept  such  nucleotide 
sequences  as  one  of  their  input  arguments.  Therefore  I  open  the 
Ontology  Browser  view,  load  the  Data  model,  switch  to  the  Input 
selection mode  of  search  and,  according  to  the  instructions  given, 
SHIFT-click on the Virus Nucleotide Sequence concept (as it is the one 
that  seems  semantically  closest  to  what  I  mean).  The  Resources 
Search window appears right away that presents to me the set of the 
four Grid Objects that fulfill my requirements (see Figure -42). Now I 
may use this windows to further pursue my search.

It  is  possible  that  there are no  Grid  Operations  that  would meet the search 
requirements. In that case the search results window does not appear and the 
user is simply notified of the fact by a message. 

Future functionality.

The Ontology Browser in its current form has a status of a prototype. While there 
are many functionalities  that  are  not  present in  it,  the release is  mainly  for 
testing purposes and to gather feedback from the users of the tool. Still, the 
main  functionality  of  Grid  Operation  search  is  already  provided  and  may be 
effectively used for faster search of appropriate Grid Objects. 

The features that are in our short and long term plans: 

• adding the activity model to the Domain Ontology Store are implement the 
search for Grid Operation by the type of the activity performed 

• integrating the data model with Data Access Client library for data query 
formulation assistance 

• align the data model taxonomy to converge with the ViroLab data schema 
(when the schema is finally decided) 

• add a separate properties page so a user may customize the browser a 
little bit.

Virolab Deliverable 3.3 A2 – version 1.0 Page 57 of 102



3.2.5.Source  Code  Access,  Bug  Reporting  and  Authors  Contact 
Information

The entire source code of the EPE plug-ins is accessible through the Subversion 
repository (the anonymouns read-only access is granted for everyone):

#> svn checkout https://gforge.cyfronet.pl/svn/plugins 

Should you find any bugs, missing functionality or you’d like to have some nice 
new features  implemented,  please  use  the  ticket  emission  and  management 
system on the Trac EPE website:

• Viewing tickets: http://virolab.cyfronet.pl/trac/epe/report

• Issuing new tickets: http://virolab.cyfronet.pl/trac/epe/newticket

You do not need any account for that, tickets could be submitted anonymously.

Authors list  and contact information: Marek Kasztelnik (VO Configuration and 
Resources  Browser  plug-ins)  [m.kasztelnik@cyfronet.pl]  and  Tomasz  Gubała 
(Ontology Browser plug-in) [gubala@science.uva.nl].

Virolab Deliverable 3.3 A2 – version 1.0 Page 58 of 102

http://virolab.cyfronet.pl/trac/epe/newticket
http://virolab.cyfronet.pl/trac/epe/report


4. GRID RESOURCES REGISTRY USER’S MANUAL
The Grid Resources Registry is a central place where information about ViroLab 
virtual laboratory resources is stored. This component is responsible for storing 
two types  of  information  that  describe  the  following  resources:  technological 
independent and technology specific. The first type of information is presented to 
the user and is very important during scenario script development (see Section 
3.2.3). The second type of the information (technology specific) is used by the 
GSEngine mechanism during executing remote resources.

This  section  shows  the  alternative  way  of  browsing  the  GRR  resources  (not 
connected with EPE) and presents the procedure of creating and registering the 
new resources.

4.1. GRID RESOURCES WEB BROWSER

This  tutorial  shows  how  to  use  the  web  version  of  Grid  Resources  Registry 
browser.

For web browser version: 0.2.3

Web Resources browser is very similar to Resources Browser EPE plug-in (see 
Section 3.2.3), but with limited functionality. It allows only to browse resources 
stored  inside  GRR.  Figure  -43 presents  Web  Resources  browser.  The  most 
important component in this tool is tree that presents all resources available in 
browsed  GRR.  By  expanding  tree  items  you  are  able  to  browse  available 
packages, Grid Objects, Grid Objects operations, implementations and instances.

Figure -43 Web Resources Browser

Virolab Deliverable 3.3 A2 – version 1.0 Page 59 of 102



Currently  Web Resources  Browser  allows to  browse resources from registries 
defined  by  Virtual  Organization.  User  is  not  able  to  configure  browser  (this 
functionality will be available in the next version of Web Resources Browser). For 
more  information  about  future  functionalities  that  will  be  added to  this  tool, 
please see [D3.3] Section 3.2.3.

4.2. ADDING NEW GRID OBJECTS

It is fairly obvious that the usefulness of any virtual collaborative space, and the 
ViroLab Virtual  Laboratory  is  no  exception,  is  the amount and quality  of  the 
resources one may use through them. One of  the crucial  resources that the 
laboratory is built around are computational activities, called Grid Objects (pages 
http://virolab.cyfronet.pl/trac/vlvl/wiki/ExecutionMechanism and 
http://virolab.cyfronet.pl/trac/vlvl/wiki/GridObjectAbstractions are good places to 
visit first to learn about the Grid Object idea). Here we would like to introduce 
possible methods of adding your own building block to the space in order to allow 
fellow users to include your tool in their experiments. 

If you have your new Grid Object operational and accessible from outside, the 
last thing is to spread the word. To make the tool visible to other members of the 
virtual laboratory community (and to components of the laboratory itself) you 
need to publish it in Grid Resources Registry (GRR). For more information how 
GRR is build see [D3.2] Section 6.1.2 and what is the implementation status see 
[D3.3] Section 3.4.

4.2.1.Preparing your Grid Object

So you have a nice piece of software that you'd like to share with your collabora-
tors. There is a couple of questions (or steps) you should try to answer to effi-
ciently and suitably provide your tool: 

1. What is your tool doing? To what purpose it could be used? 

2. What functionality and how the tool will provide to the virtual laboratory 
users? 

3. How the interaction between the tool and its future user should be orga-
nized? 

4. What would be the best technological solution to realize previous assump-
tions? 

Example. Together with my colleagues we work on a climate modeling applica-
tion and I’d like to donate a temperature provision service. In this Section we will 
follow this example in a series of steps given in the separated rectangles like this 
one.

Step by step let us assist you in this process. Also, from time to time, an exam-
ple will be presented to further picture the ideas. However, please keep in mind 

Virolab Deliverable 3.3 A2 – version 1.0 Page 60 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/GridObjectAbstractions
http://virolab.cyfronet.pl/trac/vlvl/wiki/ExecutionMechanism


this is not the only way of preparing publication of your own Grid Object and you 
are welcome to follow your own methodology if you find it suits you more. 

4.2.2.Functionality 

Step 1.  The tool  should provide current air  temperature in pre-designated 30 
weather stations. All this stations publish periodically their climate reports and the 
task would be to grab the newest ones (from web pages of stations), parse them 
and return the requested results.

This is simple yet crucial step. It is important to describe to fellow collaborators 
what the tool does in terms of its respective field or domain. This also helps the 
author himself or herself to properly and precisely define the purpose of the tool: 
what  exactly  will  it  provide.  The  result  of  this  step  should  be  a  high-level 
description of the tool (this will be useful during the publication phase later on). 

4.2.3.Interface 

Step 2. It seems it is far too inefficient to grab all the 30 results every time the 
temperature is needed as it seems our experiment will require one location per 
time. So, one operation could be called  currentAirTemp and provided with the 
location name it will return the number (Kelvin scale). Since some of other users 
may  need  this  information  in  centigrade,  I’ll  provide  the  translation 
kelvinToCelcius operation as well.

After  general  definition  of  functionality  the  next  step  is  to  decide  how  the 
functionality will be exposed for the experiment developers. You have to define 
its interface. The approach we propose is to divide all the functions of the tool 
into fairly independent operations, define their signatures and transform them 
into Grid Operations in the process of publication. Please also consider what input 
information will be required to call operations of your tool and what are possible 
sources of this information. 

4.2.4.Interaction mode 

Step  3a.  There  are  two  different  approach  I  consider  for  my  tool.  The 
straightforward one is to provide two operation in blocking, synchronous mode 
and do not store any internal state of the tool. The currentAirTemp operation will 
get the report of specified station, parse it and return the result in Kelvin scale. 
The other operation may be called to transform it into Celcius scale (by the way, 
this way the other operation could be used completely independent from the first 
one for simple transformation purposes).

At this stage you have to think on the correlation of different operations of our 
tool (having defined the operations in the previous step). Are they completely 
independent, or perhaps they should be called in some specific order. If the later, 
there is a good chance that some data is passed between them - is that data 
passed explicitly (a value returned by one operation is consumed by another) of 
is it maintained by the tool internally (an operation saves something that another 
operation will later use)? If the second is the case, the tool is probably stateful 
and so should be the interaction with it (in case of stateful tools that require 

Virolab Deliverable 3.3 A2 – version 1.0 Page 61 of 102



specific  order  of  operations  we  use  the  specific  term  of  conversation).  The 
decisions  you take regarding the  interaction  mode of  your  tool  will  probably 
highly impact the choice of implementation (of wrapping) technology you'll use in 
subsequent steps of this scenario. 

Step 3b. Another possibility would be to allow for more stateful, conversation-like 
interaction mode. For instance, to have an initialization method that one may use 
e.g.  to  constrain  the  list  of  meteo  stations  (for  optimization).  As  the  air 
temperature does not change every second, periodic check for latest reports could 
be made in background and a call to the main operation would return the latest 
result obtained for certain station.

Keep  also  in  mind  that  there  could  be  non-functional  reasons  for  choosing 
specific solution. For instance, consider a tool that has just one operation that is 
called frequently but that requires time-consuming computation to be performed 
once before. One may choose the synchronous and stateless interaction mode, 
but that introduce a huge delay during the first execution of the operation (as 
the computation is performed). In that case, one may consider adding another 
operation (like  startComputation) that would in a non-blocking mode start the 
computation (non-blocking means the calling client does not have to wait for the 
completion) and the first time the original operation is called the computation 
results are already present (in the worst case, when the operation is invoked 
right after the initialization, the result can not be any worse that in the simple, 
former scenario). 

Having the tool prepared and knowing how its functionality will be presented to 
other virtual laboratory users (that is, mainly experiment developers), the choice 
of the wrapping technology that will make the tool remotely accessible, has to be 
made. 

4.2.5.Supported technologies and protocols to implement Grid Object 

The set of remote processing technologies supported by the virtual laboratory is 
changing  with  time  as  its  components  are  developed  -  so  please  note  the 
information given below could change (hopefully grow rather then shrink) in the 
future. 

Technology Overall characteristics 
Programming 
platform 

Web services 

Useful  especially  for  stateless  services  of 
relatively  fine-grained  communication  delays 
(at  most  3-4  minutes  to  response);  mainly 
used in blocking, synchronous mode. 

Various  languages 
and command line 

MOCCA 
Better  suited  for  heavier,  more  time 
consuming computations; internal state could 
be maintained; dynamic deployment possible. 

Java and command 
line 

In the first case you basically use the SOAP framework that seems to fit your 
needs (programming platform, performance, simpleness)  to publish your own 
tool as a Web Service. In the second case, please consult the on-line MOCCA 
component tutorial [MOCCATUT].

Virolab Deliverable 3.3 A2 – version 1.0 Page 62 of 102



Step 4. Depending on the choice I made in the previous step, I would follow the 
Web Service  scenario  in  the first  case or  I  would wrap the tool  as  a  MOCCA 
component for the other, stateful solution.

Below please find some resources (tutorials, guides) that will help you proceed 
with wrapping your tool in the chosen remote processing technology. Apart from 
these  that  we  provide  ourselves,  there  are  probably  many  more  tutorials 
elsewhere. 

 MOCCA component development and wrapping tutorial 
http://mocca.icsr.agh.edu.pl/doku.php?id=doc

 Quick Java Web Services wrapping with Xfire and Maven 
http://virolab.cyfronet.pl/trac/vlvl/wiki/WsXfireTutorial

 Command line tool application wrapping with Java 
http://virolab.cyfronet.pl/trac/vlvl/wiki/ShellJavaTutorial

 Wrapping WTS services and EGEE-installed applications as Gems 
http://virolab.cyfronet.pl/trac/vlvl/wiki/WritingWrappers

 Command line tool wrapping as Web Service with Ruby 
http://virolab.cyfronet.pl/trac/vlvl/wiki/ShellWsRubyTutorial

Currently the registry has no administration entry point so in order to publish 
your tool you have to do it traditionally by inserting new records to relational 
database. Please send an e-mail message to Marek Kasztelnik from CYFRONET 
team (m.kasztelnik@cyfronet.pl) with following information:

• To register Grid Object (very similar to java interface): 

o package (e.g. cyfronet.gridspace.gem) 

o Grid Object name and description 

o Methods: 

 name and description 

 input and output parameters names, type and descriptions 

• To register Grid Object Implementation (very similar to java class): 

o Grid Object that this implementation implements 

o Instance name and description 

o Technology specific information: 

 WS: 

 Code base URL (optional). 

 WS type (XML RCP or Document) 

 MOCCA (if MOCCA component has many ports than it is mod-
eled by many Grid Objects): 

Virolab Deliverable 3.3 A2 – version 1.0 Page 63 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/ShellWsRubyTutorial
http://virolab.cyfronet.pl/trac/vlvl/wiki/WritingWrappers
http://virolab.cyfronet.pl/trac/vlvl/wiki/ShellJavaTutorial
http://virolab.cyfronet.pl/trac/vlvl/wiki/WsXfireTutorial
http://mocca.icsr.agh.edu.pl/doku.php?id=doc


 Component code base URL 

 Component class name 

 Port name 

 Component port class name 

 JOB: 

 wrapping script 

 WTS 

 wrapping script 

• To register Grid Object Instance (concrete resources installed in some con-
tainer, e.g. xFire, H2O kernel) 

o Grid Object Instance 

o Instance name and description 

o Copyright (optional) 

o Instance endpoint 

For  more  information  how  to  write  WTS  and  JOB  scripts  see 
http://virolab.cyfronet.pl/trac/vlvl/wiki/WritingWrappers

Virolab Deliverable 3.3 A2 – version 1.0 Page 64 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/WritingWrappers


5. GRIDSPACE EXPERIMENT DEVELOPER LIBRARY REFERENCE

5.1. LIBRARY CORE REFERENCE

In order to  enable a conversation between GridSpace Engine application and 
application user  the  means  for  interaction are provided by GridSpace engine 
library.  Such  a  library  is  used  explicitly  by  an  application  developer  in  the 
application code and allows him programming behavior of  data input request 
sent towards the application user. 

Sending data input request from GridSpace Engine towards the command line 
tool, EPE, EMI, or whatever that submitted the evaluation request is actually 
some kind of callback. It takes place when an evaluation request call processing 
is in progress, however suspended until  the requested data is provided. After 
that evaluation request call processing is being continued. 

On the submitter side, after intercepting callback data request, the appropriate 
form is generated and shown to the application user. After form submission the 
user input is sent back towards GridSpace Engine. 

From  the  application  developer  perspective  the  DataRequester class  is 
fundamental.  It  offers  method  getData(dataRequest) that  takes  a  string 
parameter  dataRequest that will be shown as a data request caption in a form 
and returns the user input in a string format. 

For the present, DataRequester class supports the basic functionality that is to be 
significantly extended in the future version that will result in a robust UI library 
for GridSpace Engine. 

The example usage for DataRequest class in shown in below. 

require 'DataRequester'

puts "Geno-to-drug resistance: start"

region = DataRequester.new.getData("Region (lowercase)")

puts "region " + region

Submission  and sample  conversation  in  such  an  application  in  the  GSEngine 
command line tool will result in the following output. 

Geno-to-drug resistance: start

Region (lowercase):

rt

region rt

5.2. DATA ACCESS REFERENCE

The DAC is capable of interfacing with data sources represented by standalone 
databases and by the OGSA-DAI Data Access Client developed at HLRS. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 65 of 102



The Data Access Client base class is called DACConnectClass. This class should 
be used for interfacing with VL data sources. 

DACConnectClass provides the following methods: 

new(db_tech, db_address, db_name, username, password) This  creates  a 
new DAC handle linked to the data source. At present the following technologies 
are supported: 

• mysql (for MySQL databases) 

• pgsql (for PostgreSQL databases) 

• hsql (for local HSQL databases) 

• das (for the VL Data Access Service) 

The remaining parameters should be input as strings: 

• db_address is the URI where the data source (or service) resides 

• db_name is the name of the data source which we wish to access 

• username is the login name for access to the data source (does not apply 
for DAS) 

• password is the password for access to the data source with a given login 
name (does not apply for DAS) 

Furthermore,  DACConnectClass also provides a configurable parameter called 
objective_references. This is 0 by default. If set to 1, results will be output as 
JRuby  objects  rather  than  plain  arrays  (see  below).  Use 
requestObjectiveReferences() and  requestPlainReferences() on 
DACConnectClass objects to set this parameter. 

• executeQuery(query_string) This executes a query on the given data 
source. The query string should contain a valid SQL expression. Results 
are  returned  as  a  2d  Ruby  array  (actually  a  list  of  lists)  if  the 
objective_references parameter is set to 0. Otherwise they are returned as 
a DACResult class object (see below). 

• executeUpdate(query_string) DAC  will  automatically  attempt  to 
disambiguate  query  isolation  level  basing  on  its  contents  but  this 
functionality is still in its prototype stages and should be used with care. If 
you are sure that you need to submit a  blocking query (i.e. an update), 
please use this method instead of executeQuery. 

• For both types of queries, DAC will automatically sanitize input, i.e. it will 
check  if  the  queries  contain  native  escape  characters.  If  so,  a 
DACException  will  be  thrown,  to  protect  the  data  source  against  SQL 
injection attacks. 

• describeDataSource() This  method  returns  the  names  of  tables  (i.e. 
entities) available in the given data source. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 66 of 102



• describeTable(table_name) This  method  returns  the  schema  of  the 
given table (i.e. entity). 

DACResult is a Java class with the following methods: 

• String[][] getResultArray() - Returns output data as a Java array of 
strings 

• String[][]  getResultArrayNoHeaders() -  Strips  leading  column 
headers, then returns output data array 

• int getLength() - Returns number of result tuples 

• String[] getRow() -  Returns  single  result  row at  current  position  of 
iterator (if array length exceeded, a DACException object is thrown) 

• void resetIterator() - Resets result list iterator to position 0 

5.3. COMPUTATION ACCESS REFERENCE 

Grid  Operation  Invoker  is  a  component  of  GSEngine and  is  responsible  for 
computation access. It is implemented in Jruby (see [JRUBY]) and is included in 
the GSEngine release, as well as all Java libraries that GOI requires. Its source 
can be found in the $GS_HOME/ruby/cyfronet/gridspace/goi and its Java libraries 
are placed in the $GS_HOME/java directory.

This  document  is  intended  for  developers  who  want  to  create  complex 
experiments in virology domain. Using GOI enables them not only to exploit the 
power  of  modern  object-oriented  scripting  language  JRuby,  but  also  to  take 
advantage of the Grid environment.

This manual covers the topic of using Grid Operation Invoker API inside JRuby 
scripts (a.k.a experiments) in order to invoke remote operations on Grid Object 
Instances  all  over  the  world,  regardless  of  the  communication  protocol.  It 
explains how to create Grid Objects in three different manners and introduce 
code examples. It is assumed that GSEngine is already installed and configured 
(if not please refer to Experiment Users' Manual Section 5.1) and that developer 
is familiar with the concept of Grid Object Abstraction (see Section 2.5). Please 
remember that GOI requires EDG UI (see EDG documentation) to be installed in 
order to support job submission on EGEE infrastructure. 

Grid Operation Invoker provides the uniform interface for creating Grid Objects. 
To fulfill its responsibilities GOI performs the following activities while creating 
Grid Object: 

• querying Optimizer (see [D3.3] Section 3.6) for id of optimal Grid Object 
Instance of the class requested in the script (experiment). 

• querying  Registry  (see  [D3.3]  Section  3.2)  for  technical  information 
describing selected instance. 

• loading appropriate technology adapter which creates Grid Object 

Virolab Deliverable 3.3 A2 – version 1.0 Page 67 of 102

http://marianne.in2p3.fr/datagrid/documentation


Once created, Grid Object can be used just like any other JRuby object. It covers 
the burden associated with interfacing specific middleware and makes invoking 
remote operation identical to calling a method on a local object.

It is possible for developer to bypass listed steps if she/he wishes to use low-
level API provided by adapters. 

GOI provides uniform interface to invoke operations on Grid Objects Instances, 
that  can  be  published  using  various  middleware  technologies,  such  as  Web 
Services, WSRFs, jobs etc.

There are three possible ways of GOI usage: 

• create Grid Object of a given class 

• create Grid Object for a given Grid Object Instance 

• create Grid Object using low level API by providing all necessary technical 
information 

Whichever  manner  is  used,  the  returned  object  is  always  an  object 
representative  of  a  piece  of  software  deployed  on  a  remote  or  local 
computational resource. 

GObj API

The easiest way to create Grid Object representatives is to use the GObj factory 
class methods. First of all, developer must require necessary Ruby files. GObj 
class is the most essential and in most cases, excluding the third scenario, it is 
the only class that needs to be loaded explicit in the experiment source code. To 
do so, developer must include the following code: 

require 'cyfronet/gridspace/goi/core/g_obj'

After that it is possible to create Grid Objects using GObj class methods: create 
and create_instance. The former method take the name of the Grid Object Class 
as  an  argument.  Such  invocation  performs  all  three  steps  mentioned  in  the 
paragraph describing how GOI works. For instance, to create a representative for 
a Grid Object of class named  cyfronet.gridspace.gem.EchoService the following 
code would be used: 

echo1 = GObj.create('cyfronet.gridspace.gem.EchoService')

Now, let us do the same using the latter method, create_instance, which takes id 
the Grid Object Instance. 

echo2 = GObj.create_instance(5)

In this case, querying Optimizer for an optimal instance is omitted, but developer 
must be sure that the id of desired Grid Object Instance, which is stored in the 
Registry, equals 5. Otherwise it is possible that later in experiment there will be 
an attempt to invoke operation which is not provided by the Grid Object and an 
error will be raised. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 68 of 102



Adapters API

This API enables developer to create representatives for Grid Object Instances 
directly. In this case, developer must know the exact Ruby class that is capable 
for acting as a representative, as well as technology data describing the instance. 
Using adapter API requires  in-depth understanding of  GOI and involve much 
more effort that the GObj API.

Now let us create the same object using the low level API. Firstly, we must load 
the appropriate resource class. In this manual we will create a representative for 
Web Service, so we need WsResource class: 

require 'cyfronet/gridspace/goi/adapters/ws_resource'

Next  the  technical  information  is  needed.  Below  a  Hash  containing  the  full 
information about Grid Object Instance is defined. 

techInfo = {'instId' => 5, 'name' => 'instance1',

            'endpoint' => 'http://virolab.cyfronet.pl:18080/',

            'type' => 'WS','wsType' => 'RPC', 

'method#0' => 'echo','in#0#0' => 'echoString', 

'out#0#0' => 'echoReturn',

'namespace'  =>  'http://virolab.cyfronet.pl/echo', 
'codebase' => 'url'}

Please remember, that technology information is specific for every middleware.
Finally, let us create the resource representing the EchoService: 

echo3 = WsResource.new(techInfo)

Using Grid Object representatives

Representatives of the same Grid Object, can be used identically,  albeit  they 
were produced using distinguishable methods. Moreover, invoking operation on a 
representative is analogical to calling method on a ordinary JRuby object. 

ordinary = String.new('I am local object')

l = ordinary.length

puts l

msg1 = echo1.echo('I am easy to use!')

puts msg1

msg2 = echo2.echo('I am easy to use too!')

puts msg2

Virolab Deliverable 3.3 A2 – version 1.0 Page 69 of 102



msg3 =echo3.echo('So am I!')

puts msg3

Choosing the appropriate API

As  proved  in  this  document,  using  different  APIs  involves  various  levels  of 
knowledge and understanding of  GOI.  Although all  methods for  creating Grid 
Objects representatives provide the same functionality and produce the same 
result, they provide different non-functional capabilities. For instance, the create 
method  is  the  most  convenient  to  use  and  the  most  universal,  while  the 
create_instance can be used to ensure that  a  specific  instance will  be  used, 
because of accounting issues, reliability and numerical quality of the software 
installed on a concrete node, etc. 

In the end, the low level API can be used for testing new GEMs, before they will 
be registered in GRR, as well as using external Grid Objects Instances. 

Sample experiment

Below there is full and runnable source code of a sample experiment using the 
API  described in  this  document.  A  representative for  EchoService  is  created, 
which reflects given message.

require 'cyfronet/gridspace/goi/core/g_obj'

echo = GObj.create('cyfronet.gridspace.gem.EchoService')

reflected = echo.echo('Hear me roar!')

puts 'Reflected message: ' + reflected

 

Expected output for this experiment is: 

Reflected message: Hear me roar!

For more sample scripts please refer to example experiments (Section 6). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 70 of 102



6. EXAMPLE EXPERIMENTS

This section describes a set of experiments that could be used to test and learn 
the ViroLab Virtual Laboratory. Since the experiments presented here require the 
GSEngine we assume you have downloaded the latest release of this software 
package and you are familiar with the Experiment Users' Manual.

Each  experiment  subsection  below  gives  information  on  the  purpose  of  the 
experiment being described and how is it realized using the means of the Virtual 
Laboratory.

All  the  examples  are  compliant  with  GridSpace  Engine  version  0.3.0.  The 
package with the latest version of the experiments could be obatined from the 
GridSpace  Engine  development  page:  http://virolab.cyfronet.pl/trac/vlruntime. 
In fact, due to reasons of brevity, the explanations usually list just some parts of 
experiment  plans  (so  you  have  to  refer  to  the  SampleExperiments  package 
contents in order to get the whole experiment plan scripts).

Some of the experiment below runs on EGEE testbed [EGEE]. In order to execute 
these, one needs :

• a valid grid certificate,

• the  EDG User  Interface  installation  (with  its  executables  in  the  $PATH 
environmental variable).

Before an experiment is started the user needs to create his proxy certificate (by 
executing the grid-proxy-init command and provide the passphrase if requested). 
For  more  instructions  on  acquiring  a  grid  certificate  and  using  LCG  job 
submission middleware, please refer to LCG-2 User Guide [LCG2]. 

6.1. ECHO

6.1.1. Short description

Functionality. This is the simplest experiment in this set. It produces a message to a 
remote  echo server,  which  in  turn  responds  with  the  same  message.  The  returned 
message is printed out.

Realization.

1. The Echo server is available - it is a Web Service running on a remote machine 
that is able to reflect a received message 

2. The server has a single echo operation and the server's endpoint and its operation 
signature is registered inside the Grid Resources Registry (GRR) - after that oper-
ation the server becomes a Grid Object instance 

3. On the local side (that is, within the GSEngine where the experiment is being ex-
ecuted) the Grid Operation Invoker (GOI) serves as a  generic client for remote 
Grid Object instances (including the ones with SOAP WS interface) 

4. Using the specific libraries the experiment script instantiates a local representation 
of the remote Echo server (called a stub) 

Virolab Deliverable 3.3 A2 – version 1.0 Page 71 of 102

https://edms.cern.ch/file/454439/2/LCG-2-UserGuide.pdf
http://virolab.cyfronet.pl/trac/vlruntime
http://virolab.cyfronet.pl/trac/vlruntime
http://virolab.cyfronet.pl/trac/vlvl/wiki/WikiStart


5. The local stub now has the same operations as the remote Echo server does, so it 
is just a matter of simple method invocation on the stub to get the work done. 

6.1.2.Detailed code explanation

The entire code is written in the Ruby programming language and is executed with the 
JRuby interpreter. 

require 'cyfronet/gridspace/goi/core/g_obj'

This includes the main part of the Grid Operation Invoker (GOI) to be used later on. 

echo = GObj.create('cyfronet.gridspace.gem.EchoService')

Here is the main part - the Grid Object instantiation. Using a special GObj class and its 
create method one creates a local stub of the remote Echo server. The name used as a 
parameter is the name by which the Echo server is registered within the Grid Resources 
Registry (GRR). After the successful execution of this line of code, the  echo variable 
should contain the local stub of the remote Grid Object along with all the operations it 
exposes. 

reflected = echo.echo('Hear me roar!')
puts 'Reflected message: ' + reflected

One may see (the first line of the code snippet above) that the local  echo stub of the 
Echo Grid Object is a regular representation of the server. The simple execution of echo 
method gives as the expected result that may be printed out for the user.

6.2. NUCLEOTIDE SEQUENCE

6.2.1.Short description

Functionality. This experiment shows a simple yet very useful data retrieval scenario. It 
uses remote access to a relational data base server to query it for data. The result data is 
printed out. 

Realization. 

1. The data is retrieved from the virolab.cyfronet.pl MySql server 

2. The DB has a test database inside with read access for the user testuser (no pass-
word required) 

3. The Data Access Client (DAC) on the GSEngine side is used to get a working con-
nector to the remote database and the connector is used to perform querying 

6.2.2.Detailed code explanation

The entire code is written in the Ruby programming language and is executed with the 
JRuby interpreter. 

require 'cyfronet/gridspace/dac/DACConnectClass.rb'

Virolab Deliverable 3.3 A2 – version 1.0 Page 72 of 102



This turns on the Data Access Client part of the GSEngine. 

db = DACConnector.new
     ("mysql", "virolab.cyfronet.pl", "test", "testuser", "")

Instantiation. Here the developer passes to the  DACConnector class constructor all the 
needed identification and authorization data: 

• data source type (here: mysql rdbms) 

• data source location (here: the DNS name, assuming the standard mysql port) 

• data base name inside the designated server (here: test) 

• login and password to access the server (here: non-anonymous testuser with no 
password is used) 

db.executeQuery("select column_name from information_schema.columns
    where table_name='nt_sequence'")
# (...)
result = dbzeus.executeQuery("select nucleotides from nt_sequence 
where patient_ii=6;")

Here are examples of using the created connector to ask the server some typical SQL 
queries. The first one shows some structure information of a chosen table, the other one 
gets the actual data from the table. This is the pure SQL so you probably has a good idea 
what could be done here. 

One may see (the first line of the code snippet above) that the local  echo stub of the 
Echo Grid Object is a regular representation of the server. The simple execution of echo 
method gives as the expected result that may be printed out for the user. 

result.each_index {|ind|
    puts ind.to_s + ": " + result.flatten[ind]
}

Finally, the query result is returned in two-dimensional Ruby array (SQL-type of data 
source  usually  return  the  query  result  in  a  table)  -  so  you  may  use  internal  Ruby 
constructs to analyze, parse, transform the obtained data. 

6.3. DATA ACCESS

6.3.1.Short description

Functionality. Similar to the Nucleotide sequence scenario above, this one is about data 
retrieval.  The main  difference is,  however,  the  fact  that  now we get  data  from the 
ViroLab Data Access Service (DAS) that federates many data from various institutes in 
Europe and presents them as unified, virtual data base. The Data Access Client (DAC) 
that is shipped with GSEngine is able to contact this type of data source as well. 

Realization. Checking the source code of this example you will quickly find out that it is 
very similar to the  Nucleotide sequence retrieval scenario - and this is the main idea 
behind DAC: to have multiple types of data sources accessible for programmers in a 
unified way. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 73 of 102



6.3.2.Detailed code explanation

The entire code is written in the Ruby programming language and is executed with the 
JRuby interpreter. 

require 'cyfronet/gridspace/dac/DACConnectClass.rb'

This turns on the Data Access Client part of the GSEngine. 

dbhlrs = DACConnector.new
("das","angelina.hlrs.de:8080/wsrf/services/DataResourceService",""
,"","")

Instantiation. Here the developer passes to the  DACConnector class constructor all the 
needed identification and authorization data: 

• data source type (here: das Data Access Service type) 

• data source location (here: the DNS name) 

• other parameters are not needed right now (in the case of this data, no authoriza-
tion mechanism is required) 

dbhlrs.describeDataSource()
dbhlrs.describeTable("viralload")

Those are two new methods of DAC API that allow to obtain some structure, meta-data 
on the data source we access. The describeDataSource shows some general information 
while the describeTable returns more specific data on a chosen table (mainly the column 
names). 

query_result=dbhlrs.executeQuery(
    "select IDpatient,ViralLoad from viralload limit 20")
query_result.each {|row|
    p row
}

The target query is executed here to get some examples of viral load indicators (this data 
base sample is completely anonymized, so no mapping of the viral load level to specific 
person could be made). As the query result is returned in two-dimensional Ruby array 
one uses internal Ruby constructs print it out as the main experiment result.

6.4. ALIGNMENT

6.4.1.Short description

Functionality. This experiment aligns the nucleotides sequence using a RegaDB tool 
published  with  WTS (Witty  Services  [WTS])  middleware.  The  nucleotide  sequence  is 
hardcoded as nt_seq variable. The obtained alignment is printed out. 

Realization. 

Virolab Deliverable 3.3 A2 – version 1.0 Page 74 of 102



1. The regadb.RegaAlignment is a WTS service. It can be accessed with the wts_cli-
ent Java library. 

2. This service has a single align operation which takes nucleotide sequence and re-
gion as input parameters and returns alignment. 

3. The service is registered in GRR, which contains all technical information about 
this Grid Object Instance. 

4. GOI support WTS technology, therefore representative for the WTS service can be 
created using GObj API. 

5. A  representative,  which  has  the  align operation,  is  created  using  WtsAdapter 
class. 

6. The align method is called on a representative that delegates the computation to 
WTS service. 

6.4.2.Detailed code explanation

The entire code is written in the JRuby programming language and is executed with the 
JRuby interpreter. 

require 'cyfronet/gridspace/goi/core/g_obj'

This includes the main part of the Grid Operation Invoker (GOI). 

alignTool = GObj.create('regadb.RegaAlignment')

Using a special GObj class and its create method one creates a representative for a WTS 
service.  The  name used  as  a  parameter  is  the  name by  which  the  WTS  service  is 
registered within the Grid Resources Registry (GRR). After the successful execution of 
this line of code, the alignTool variable represent the Grid Object Instance along with all 
the operations it exposes. 

result = alignTool.align(nt_seq, 'PRO')

As shown in the code snippet above, invocation of remote operation is simply calling a 
method  on  a  representative.  Now  let  us  create  the  same  representative  using  the 
create_instance method. The difference is only the input parameter, which is now an 
instance id, instead of a Grid Object class name. Invocation of remote operation is the 
same as  in  the previous case.  See Section  2.5 for  explanation of  different  levels  of 
abstractions of Grid Objects. 

alignTool2 = GObj.create_instance(9)
result = alignTool2.align(nt_seq, 'PRO')

6.5. LCG TESTBED TEST EXPERIMENT

In order to run this experiment you need a valid grid certificate for the EGEE testbed  
(see the note in the introduction to the example experiment section). 

Virolab Deliverable 3.3 A2 – version 1.0 Page 75 of 102

http://virolab.cyfronet.pl/trac/vlvl/wiki/ComputationAccessReference


6.5.1.Short description

Functionality. This  experiment  executes  a  bash  shell  command  on  the  EGEE 
infrastructure. It submits it as a job using EDG User Interface, which must be installed on 
the same machine as GSEngine. The command that will be executed must be in a $PATH 
variable  on  the  EGEE  testbed  machine  or  a  full  path  to  the  executable  should  be 
provided. 

Realization. 

1. EGEE infrastructure offers a great amount of computational resources with stand-
ard Linux distributions. 

2. User running the script has a valid proxy certificate, therefore can submit jobs. 

3. Shell command is specified in the experiment. 

4. While executing the experiment, GOI creates a JDL file describing the job and 
submit it through EDG UI. 

5. Output of the shell command is downloaded and printed. 

6.5.2.Detailed code explanation

The entire code is written in the Ruby programming language and is executed with the 
JRuby interpreter. 

require 'cyfronet/gridspace/goi/core/g_obj'

This includes the main part of the Grid Operation Invoker (GOI).

sample = GObj.create('cyfronet.gridspace.gems.lcg.LcgSample')

A representative is created with create class method of GObj. It enables execution a bash 
shell command on the testbed by calling the execute_shell_cmd method. 

result = sample.execute_shell_cmd('ping -c 5 $1 | grep -v 64', 'vi-
rolab.cyfronet.pl')

Output of the shell command, which in this case is ping -c 5 virolab.cyfronet.pl | grep -v 
64, is assigned to the result variable. 

puts result

Result is printed. If job completed successfully similar output should be displayed: 

PING virolab1.cyfronet.pl (149.156.9.2) 56(84) bytes of data.
--- virolab1.cyfronet.pl ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
rtt min/avg/max/mdev = 0.942/0.977/1.008/0.021 ms, pipe 2

Virolab Deliverable 3.3 A2 – version 1.0 Page 76 of 102



Virolab Deliverable 3.3 A2 – version 1.0 Page 77 of 102



7. DATA ACCESS SERVICES PROTOTYPE MANUAL

7.1. INTRODUCTION

The complexity of data management on a Grid arises from the scale, dynamism, 
autonomy,  heterogeneity,  and  distribution  of  resources.  To  conceal  these 
complexities  of  the  underlying  infrastructure,  a  sophisticated  management 
system  needs  to  be  developed,  which  ensures  that  the  resources  appear 
transparent to their users. This could be achieved by hiding the different data 
resources  and  their  internals  behind  a  layer  of  virtualization  services  that 
guarantees data access in a consistent, data resource-independent way.

The Data Access Services (DAS) consist of a set of such virtualization services 
that provide interfaces for querying, updating, transforming and delivering data 
to various data resources via standard web services. The current version, which 
is described in detail by this document, allows users to collect any kind of (meta) 
information  of  an  underlying  resource  including  the  used  data  management 
technology  (database  system),  schema  specification,  and  availiability  of  the 
resource itself. This information can then be used by clients to specify a query 
that accesses the corresponding database similarly as they would proceed within 
their local environment. Not only single data resources can be accessed but also 
queries to multiple databases can be simultaneously performed using specific 
interfaces  provided  by  the  DAS.  There  are  currently  some  restrictions  while 
sending  requests  to  more  than  one  resource  but  the  DAS  is  in  constant 
development and the functionalities are permanently extended.

This  documentation  is  intended  to  support  other  developers  working  in  the 
ViroLab project to connect their components and applications with the DAS in 
order to get an unified entry point for distributed data access. It describes the 
main steps to set up and use the services developed and offers a deeper insight 
into the implementation structure of the first prototype.

7.1.1.References and Source Code

The  current  DAS  JavaDoc  source  code  documentation  can  be  found  at  the 
following web address:

http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html

The  latest  source  code  of  the  DAS and appropriate  test  applications  can  be 
downloaded from the ViroLab SVN hosted by University of Stuttgart: 

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/

The  access  to  the  repository  is  restricted  only  to  members  of  the  ViroLab 
consortium. An open source release of the DAS is planned to be provided at the 
end of the project.

7.2. PROTOTYPE USAGE

In  order  to  deal  with  the  DAS,  there  are  some  technical  prerequisites  for 
components and applications regarding hardware and software. In a typical Grid 

Virolab Deliverable 3.3 A2 – version 1.0 Page 78 of 102

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/
http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html


infrastructure, the DAS is usually installed at one central location where it can be 
accessed from any external machine. This section gives an overview on how to 
interact  with  the  DAS  from  a  particular  machine  and  also  explains  basic 
functionalities and some advanced features.

7.2.1.Running the Prototype

7.2.1.1.Operating Requirements

To  communicate  with  the  DAS,  which  is  based  on  standard  web  service 
interfaces, an user - could be an application or a component – has to ensure that 
the latest interface description (WSDL specification) is used. These descriptions 
are normally used to automatically generate so-called client stubs, a set of Java 
classes, which allow the interaction with the corresponding services in a smooth 
way.

The following sections shall provide setup information that is required to use the 
generated classes and to finally interact with the DAS.

Local Hardware Requirements

The hardware requirements for using the client stubs are not very high as any 
today’s computer hardware able to run Java 5 software should be sufficient. An 
Internet connection is needed in order to call the DAS. As the services are quite 
communication  dependent,  the  optimal  configuration  will  have  a  low-latency 
Internet connection.

Local Software Requirements

The software may run on almost every 32-bit operating system like Windows XP, 
Vista or Server 2003 as well as on different Linux distributions like Ubuntu or 
SuSe  Linux.  It  only  requires  a  running  installation  of  the  Java  5  Runtime 
Environment,  which  can  be  directly  downloaded  free  of  charge  from  SUN’s 
website (http://java.sun.com/j2se/1.5.0/).

Furthermore, to ensure a proper working with the DAS, a number of third-party 
Java libraries (compiled and zipped in jar files) is needed:

• activation.jar (http://java.sun.com/products/javabeans/jaf/index.jsp)

• addressing-1.0.jar (http://jakarta.apache.org/addressing/)

• axis.jar (http://ws.apache.org/axis/)

• commons-discovery.jar (http://jakarta.apache.org/commons/discovery/)

• commons-logging.jar (http://jakarta.apache.org/commons/logging/)

• jaxrpc.jar (http://ws.apache.org/axis/)

• log4j.jar (http://jakarta.apache.org/log4j/)

• saaj.jar (http://ws.apache.org/axis/)

• servlet.jar (http://jakarta.apache.org/tomcat/)

• wsdl4j.jar (http://sourceforge.net/projects/wsdl4j/)

• wss4j.jar (http://ws.apache.org/wss4j/)

• xalan.jar (http://xml.apache.org/xalan-j/)

• xercesImpl.jar (http://xml.apache.org/xerces2-j/)

• xml-apis.jar (http://xml.apache.org/xerces2-j/)

Virolab Deliverable 3.3 A2 – version 1.0 Page 79 of 102

http://xml.apache.org/xerces2-j/
http://xml.apache.org/xerces2-j/
http://xml.apache.org/xalan-j/
http://ws.apache.org/wss4j/
http://sourceforge.net/projects/wsdl4j/
http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/
http://jakarta.apache.org/log4j/
http://ws.apache.org/axis/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/discovery/
http://ws.apache.org/axis/
http://jakarta.apache.org/addressing/
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/j2se/1.5.0/


• xmlsec.jar (http://xml.apache.org/security/)

Principially, there are two ways to get the latest client stubs. Firstly, one can 
download them from the SVN repository  (see part  1.1)  or  secondly  one can 
create them dynamically everytime before using the DAS.  The second option 
would  be more flexible  but  requires  additional  effort  from the developer.  He 
needs to modify the source code to create the Java classes on-the-fly during 
program execution. The developer can for example use the Axis tool WSDL2JAVA 
available  within  the  Axis  library  earlier  mentioned  or  he  can  use  the 
CreateDASStubs class shipped with the DAS, which is also available within the 
SVN repository. 

Grid infrastructure requirements

The main requirement for using the DAS is that it has to be operational and that 
it publishes its web service interaces (WSDL) externally.  Being unavailable, the 
user’s requests will be rejected by the DAS.

If  additional  security  between a client  and the DAS is  required due to some 
specific reasons, there is an optional feature that allows secure communication 
with  the  services  -  the  messages  are  encrypted  and  signed.  To  turn  these 
security functionalities on, the provider of the DAS needs to set some property 
values within the DAS configuration files and a valid X.509 certificate needs to be 
in place as well. The client also needs one of these certificates in order to encrypt 
and decrypt the corresponding messages. Both certificates must be trusted by 
the same certificate  authority  (CA),  otherwise the integrity  of  the exchanged 
messages is not guaranteed.

Further information on security principles and mechanisms can be found at the 
following website:

http://gdp.globus.org/gt4-tutorial/multiplehtml/pt03.html

7.2.1.2.Step-by-Step User Setup

Step 1: Download the precompiled stubs from the SVN or create them on-the-fly 
using the following WSDL file:

http://angelina.hlrs.de:8080/wsrf/services/DataAccessService?wsdl 

Step  2:  Make  sure  to  have  a  proper  installation  of  the  Java  5  Runtime 
Environment  on  the  local  site  (simply  search  for  java  executable).  If  not, 
download and install it properly.

Step 3: Get all the third-party libraries of the software. Please check with Local 
Software Requirements section where to download these files.

Step  4:  Use  the  stubs  together  with  all  the  other  libraries  to  include  DAS 
interactions within your own source code. One can proceed like the following 
example where a connection to the DAS is established and different resource IDs 
are requested and simply printed out.
DataAccessServiceAddressingLocator locator = new DataAccessServiceAddressingLocator();
EndpointReferenceType endpoint = new EndpointReferenceType();
try
{

Virolab Deliverable 3.3 A2 – version 1.0 Page 80 of 102

http://angelina.hlrs.de:8080/wsrf/services/DataAccessService?wsdl
http://gdp.globus.org/gt4-tutorial/multiplehtml/pt03.html
http://xml.apache.org/security/


  String serviceURI = "http://angelina.hlrs.de:8080/wsrf/services/DataAccessService";
  String ogsaService = "http://csharp.hlrs.de:9090/wsrf/services/hospitals";
  endpoint.setAddress(new Address(serviceURI));
  DataAccessPortType dataService = locator.getDataAccessPortTypePort(endpoint);
  if(dataService != null)
  {
    System.out.println("Connecting to service at: "+serviceURI);
    DataResourceList result = dataService.getAvailableDataResources(ogsaService);
    if(result != null)
    {
      for(int i = 0; i < result.getResources().length; i++)
      {
        ResourceParams currentResource = result.getResources(i);
        if(currentResource != null)
        {
          System.out.println("Found resource: "+currentResource.getResourceID());
        }
      }
    }
  }
  else
  {
    System.out.println("Cannot connect to service at: "+serviceURI);
  }
}
catch(RemoteException e)
{
  e.printStackTrace();
}

Step 5: Compile the source code and execute the program.

7.2.2.Basic Operations

The DAS currently offers different functionalities for querying distributed data 
resources. The basic features allow the interaction with underlying databases in a 
common way  but  also  provide  specific  methods  such  as  distributed  queries, 
download of  publicly  available  rule  sets,  and more.  Details  on  the  interfaces 
currently available are described on the following website:

http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html

In order to give users an idea of how to use the basic functionalities and also in 
which order these operations must be invoked, the following parts shall simply 
list the single methods and explain their basic features. For more details on the 
implementation, please refer to section 7.5.

Part 1 will explain the main interfaces for accessing remote data resources. Part 
2 will concentrate on the submission of distributed queries to various resources 
concurrently.  Finally,  part  3  presents  one  specifically  implemented routine to 
download publicly available rule sets while part 4 describes the principle how to 
store specific application data.

Virolab Deliverable 3.3 A2 – version 1.0 Page 81 of 102

http://www.hlrs.de/organization/ds/projects/virolab/dasapi/index.html


Part 1: Connecting to and querying from remote databases

• Initialize  the  corresponding  service  and  resource.  The  Initparams 
argument of the method requires two parameters, the service URL and 
the abstract resource ID (typically an unique name).

boolean init(InitParams params) where params is used the following way:
    InitParams initParams = new InitParams();
    initParams.setServiceLocation("http://csharp.hlrs.de:9090/wsrf/services/hospitals");
    initParams.setResourceID("ROME");

• Collect  the  data  resource  information  of  a  particular  resource.  This 
information includes the database technology (e.g. MySQL, Postgres) and 
a  list  of  keywords  indicating  available  tables  -  this  is  currently  a 
prerequisite, refer to section 7.2.4.

DataResourceInformation  getDataResourceInformation(String  resourceID)  where 
resourceID is “ROME”

• Query for the schema definition. This principal is currently based on plain 
SQL statements.  To request  schemes from different  databases,  please 
refer to the according SQL statements.

DataResult  getDataFromQuery("Describe currentTableName")  ->  currentTableName 
obtained from previous request

• Perform a concrete query. To query different databases, please refer to 
the according SQL statements.

DataResult getDataFromQuery("Select * From currentTableName") or whatever you want…

Part 2: Submitting distributed queries

Submitting a distributed query to multiple resources is currently restricted to one 
specific method:

DataResult submitDistributedQuery(java.lang.String queryString)

This method requires a real SQL query as input and then automatically performs 
the following actions:

• Checks which resources are available
• Requests data resource information of each available resource
• Compares the keywords to the tables given by the query
• If corresponding resources are found, each of them is queried using the 

input statement
• Finally, the results are merged and the resource ID is added to each new 

data row as an additional primary key

Virolab Deliverable 3.3 A2 – version 1.0 Page 82 of 102



Part 3: Requesting publicly available rule sets

To deal with such rule sets, one specific method was implemented that handles 
all  relevant  activities  (download,  version  checking,  submission  to  requester) 
based on the requirements of the DRS application.

The method can be directly called by the DRS or any other component. The only 
necessary argument to be passed to the function is the type of rule sets wanted 
while the version argument is optional. These arguments are simple string types 
and must have the following input values.

• String type: ANRS|HIVDB|REGA

• String version: e.g. 4.1.0 (optional)

The result can either be a notification message (String) saying that the current 
rule set version is up-to-date (‘Your current version is up-to-date’), or an XML 
document (String) including the latest rule set.

To  point  out  the  functionality,  there  is  a  simple  test  application  named 
AccessRulesetsClient. It  is a Java Swing application, which allows the user to 
input  the  relevant  information  (required  by  the  above  explained  method 
RequestRuleSets) and then starts to process this input by downloading a new 
version or to find out that the current one is up-to-date. The test application is 
available in the SVN at

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/
TestClients.

The application can be started by typing the following into a command line:

ant runRuleSetClient

The following window appears on the desktop.

Figure -44: Selecting the type of rule sets

When the version is up-to-date, the following notification will be shown.

Virolab Deliverable 3.3 A2 – version 1.0 Page 83 of 102

https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/TestClients
https://svn.gforge.hlrs.de/svn/virolab/trunk/modules/DataAccess/ViroLab_v.0.2/TestClients


Figure -45: Received notification message

If a newer rule set version is available, a message box will pop up and ask 
whether to save the newer version or not (it will be saved as an XML file).

Figure -46: Save the newly available rule sets

Part 4: Storing relevant application data in a specific database

In order to track specific  experiment results and user inputs related to these 
experiments, every application should store their input as well as output data in 
a  corresponding  database.  In  the  current  version,  the  DAS  provides  one 
particular method that allows to store appropriate application data:

boolean storeApplicationData(AppStoringParams appStoringparams)

It should be called whenever an application wants to store its data. The input 
argument required by the function consists of two parameters, which should be 
of the following input format:

• AppType appType: DRS|RegaAlignment|RegaHIVSubType

• String[] values: an array of values to be stored

Internally, the method firstly analyzes the application type and based on type 
value,  the  particular  application-dependent  function  is  called  and  all  passed 
values are stored in the corresponding database (refer to section 7.5.3).

7.2.3.Advanced Features

One advanced feature in the current release of the DAS is the integration of the 
services together with the authorization principle of Shibboleth. It is in an early 
stage  of  development  so  that  the  final  user  authorization  is  more  or  less 

Virolab Deliverable 3.3 A2 – version 1.0 Page 84 of 102



implemented in a static way, meaning that as long as a user carries a specific 
attribute  such  as  a  role,  institution,  etc.  he  might  be  allowed  to  access  a 
particular resource.  There is  not a real  dynamic procedure for access control 
available yet but the future releases of the DAS will also contain such a dynamic 
authorization model where a so-called Policy Decision Point (PDP) can be asked 
whether a user has the necessary attributes to enable his access to a particular 
resource. For more information on Shibboleth and the principle used in ViroLab, 
please refer to the deliverables D2.2 and D3.2 submitted in month 12 and 9 
respectively.

7.2.4.Known Problems

The current version of the DAS software is in its first release but most of the 
basic functionality is considered stable. There are actually no known bugs but 
this might change while the software is in daily usage. Nevertheless, the DAS has 
got  some limitations  and yet  unimplementd  features,  which  shall  be  roughly 
listed and explained, and which will be covered by future releases.

1. Yet unimplemented features:

• Dynamic user authorization: Using a PDP and user-defined policies 
(usually  defined  and  managed  by  data  providers  themselves)  to 
control the access to different resources

• Meta  query  language  to  simplify  communication  with  services: 
Developing a higher-level language that allows application users as 
well  as  developers  to  query  resources  without  using  real  SQL 
statements but rather common well-known terms

• Parallelization  of  distributed  queries:  Develop  an  algorithm  that 
enables parallel processing of a distributed query – currently done in 
a sequential order - to increase performance and reliability of user 
queries

• Automatic registration of newly available resources: Design a wizard 
for  data  providers  that  facilitates  automatic  registration  of  their 
resources at the DAS

• Functionalities that enable easy and efficient requesting of schema 
specifications

• Application-specific  transformations  that  transform  data  or  data 
formats for specific needs of ViroLab applications

2. Current limitations

• Submission of distributed queries:

- All tables must have the same schema

- The database technologies used should be the same

- The keywords identifying the content of a data resource must 
be  equal  to  the  database  table  names  (requirement  for 
OGSA-DAI only)

- The results contain a new primary column: the resource ID

Virolab Deliverable 3.3 A2 – version 1.0 Page 85 of 102



• Schema  retrieval:  Schema  specifications  can  only  be  requested 
using corresponding SQL statements like  Describe table for MySQL 
databases

• Authorization: Authorisation is more or less static, granting either 
full access or no access to all service methods (access denied!)

• Query  language:  DAS interfaces  must  be  queried  using  concrete 
SQL statements instead of an abstract query language

• Application data storage: The current implementation is limited to 
one specific ViroLab application – Drug Ranking System (DRS) – but 
further applications will follow

7.3. INTERFACE REFERENCE GUIDE

Since the current release of the DAS provides standard web service interfaces, 
one typically needs a client to interactively test its functionality. Therefore, a 
distributed database browser was implemented, which allows users not only to 
browse the resource’s content like its schema and data but also to manipulate its 
entries.

The GUI of the ‘Distributed Database Browser’, which can be seen in Figure -47, 
is a simple but very helpful application to quickly overview available resources 
and their contents. It presents on one screen all information about the selected 
resource including available tables, table schemes, and table contents. One can 
perform specific selections on the tables and if a user has permission to insert, 
update, or delete data sets, this can also be directly done via this application.

Virolab Deliverable 3.3 A2 – version 1.0 Page 86 of 102



Figure -47: The main ‘Distributed Database Browser’ window

In order to facilitate the work with the application, the main functionalities shall 
be roughly described:

• Show data services: Visualizes all available data services and their 
corresponding resources based on the information in the central data 
service repository (see upper left part)

• Add new service: Registers a new data service in the central repository 
used by the DAS – see Figure -48

• Delete a service: Deletes a data service from the central repository

Virolab Deliverable 3.3 A2 – version 1.0 Page 87 of 102



Figure -48: Pop-up window for adding a new data service instance

• Init resource: Initializes the selected resource according to the service URL 
provided

• Show tables: Displays the available tables including the number of rows 
and the latest update time (upper right part)

• Show table schema: Displays the table schema (central part).

• Show table contents: Displays the table contents based on the query 
provided (lower central part)

• Insert data set: Adds a new data set to the current table (if permitted)

• Update data set: Updates a selected data set (if permitted) – see Figure
-49

• Delete data set: Deletes a selected data set (if permitted)

• Exit: Closes the application

The application is currently in an early stage of development so that not all 
planned functionalities of the DAS have been implemented so far. A new 
prototype is considered for the end of 2007, which then will include also the 
capabilities of submitting queries to multiple resources at the same time.

In parallel, a second user interface is developed that almost provides the same 
functionalities but implemented as a portlet for the project portal, which is based 

Virolab Deliverable 3.3 A2 – version 1.0 Page 88 of 102



on the Google Web Toolkit (GWT) instead of being a stand-alone Java 
application.

Figure -49: Pop-up window for updating a selected data set

7.4. TROUBLESHOOTING Q&A

Q: Upon submitting a DAS query, the system responds with an error saying that 
it is unable to connect to the DAS (ConnectException – connection refused).

A: The DAS may be down for maintenance or you may be experiencing network 
problems. If the situation persists, please contact Matthias Assel (assel@hlrs.de).

Q: The Axis engine reports an error that it could not find the target service to 
invoke.

A:  Check  the  service  URL  you  are  using.  This  error  typically  indicates  a 
malformed or incorrect URL.

Q: The DAS complains with an exception that the ‘Passed argument cannot be 
null’ (IllegalArgumentException).

A: While calling any of the interfaces provided, please make sure that none of 
the arguments passed is null.

Virolab Deliverable 3.3 A2 – version 1.0 Page 89 of 102

mailto:assel@hlrs.de


Q: The DAS complains with an exception that the ‘Passed argument cannot be an 
empty string’ (IllegalArgumentException).

A: While calling any of the interfaces provided, please make sure that none of 
the string arguments passed is empty.

Q: The DAS answers with the exception  ‘You do not have the permission to 
perform this action on the resource’ (DASException).

A:  You  are  actually  not  authorized  to  perform  the  chosen  action  on  the 
corresponding resource. This may have two reasons. Firstly, the data provider 
has denied access to his resources for particular users due to some personal 
decisions (-> contact the responsible data provider), or secondly your institution 
is not well prepared for the ViroLab security infrastructure (-> contact your local 
responsibility).

Q:  While  executing  a  query  on  a  particular  resource,  the  DAS  throws  an 
exception  saying  that  it  is  ‘Unable  to  perfom  the  query  on  the  resource’  
(DASException).

A:  This  error  might  occur  basically  if  a  query is  incorrect  or  malformed and 
cannot be interpreted by the corresponding data  resource technology.  Please 
check your  statement  carefully  and try  to  resubmit  the  query.  In  case  your 
queries are correct but you are still getting the error, please contact  Matthias 
Assel (assel@hlrs.de) who will be able to check the logs for further information.

7.5. IMPLEMENTATION STRUCTURE

7.5.1.Product Use Cases

The DAS is  designed as  a  set  of  services that  virtualize  different  underlying 
resources so that users and applications can access them in a transparent way. 
Figure -50 depicts multiple requesters using different services provided by the 
DAS in order to deal with several databases as if they were one large single data 
resource.

Virolab Deliverable 3.3 A2 – version 1.0 Page 90 of 102

mailto:assel@hlrs.de


Figure -50: General architectural overview of the DAS

A typical use case explaining the core functionalities of the services is shown in 
Figure -51. Each single step - starting with the user’s request up to the response 
sent back by the DAS - is highlighted within this chain by one specific block. 
Basically, all the components play a particular role within this workflow and for 
each of them different interfaces need to be provided and implemented. For pure 
data access, the functionalities provided by the OGSA-DAI toolkit are sufficient, 
but  additional  effort  on  security,  mapping  of  user  statements  into  resource-
dependent  statements  as  well  as transforming query results  into  application-
readable statements, is needed.

Virolab Deliverable 3.3 A2 – version 1.0 Page 91 of 102



Figure -51: A typical use case within the ViroLab scenario

7.5.2.Product Component Model

An overview on the main components of the DAS and their dependencies among 
each other is visualized in Figure -52.

Figure -52: Main components of DAS

Virolab Deliverable 3.3 A2 – version 1.0 Page 92 of 102



• Authentication:  The  authentication  module  is  responsible  for  the 
identification of a user based on his credentials

• Authorization:  The  authorization  interface  decides  whether  a  user  is 
authorized to perform a certain task by mapping user attributes on data 
handling activities and resources

• Cryptography: The service provides capabilities for decrypting incoming 
and  encrypting  outgoing  messages  to  ensure  secure  transmission 
between different endpoints

• Data Resource Discovery: The discovery service virtualizes the location 
of  data  resources  by  mapping  common  language  terms  onto  data 
resource-dependent statements

• Data Access: The data access infrastructure is the most important part 
of the overall system. It provides interfaces to access different types of 
resources. Its main functionalities are based on the OGSA-DAI toolkit.

• Data Transformation: The transformation service provides methods for 
dynamically adding new transformation schemes in order to change the 
output format conceptional for a user application

• Messaging:  The messaging subcomponent of  the notification handling 
infrastructure contains mechanisms for publishing, subscribing to, and 
managing subscription to notifications about single events or families of 
interest

• Monitoring:  The  monitoring  service  is  responsible  for  recording  all 
transactions that occur inside the data access subsystem

• Repository:  The  repository  will  be  used  for  storing  any  kind  of 
intermediate data

• Laboratory  Database:  The  laboratory  database  acts  as  a  long  time 
storage with a relatively short access time and can be used also by other 
components  of  the  ViroLab  infrastructure  like  for  example  the 
Provenance system

7.5.3.Detailed Implementation Model

Since the DAS is based on an service-oriented architecture and its functionalities 
are provided as standard web service interfaces, the focus for describing the 
implementation  model  lies  on  one  specific  service  implementation  class 
(‘DataAccessServiceImpl’ –  see  API  description  for  further  details),  which 
includes almost two-thirds of the main interfaces. For more details on the design 
and implementation of single DAS components, please refer to deliverable D3.3.

The interfaces can be summarized into two main parts. The first part contains 
standard  interfaces  for  querying  remote  databases  including  one  specific 
interface for submitting distributed queries, whereas the second part includes 
particular  methods  for  requesting  publicly  available  rule  sets  and  for  storing 
application-dependent data.

Part 1: Connecting to and querying from remote databases

Most of the interfaces provided are directly connected with corresponding OGSA-
DAI interfaces.  Figure -53 depicts the specific use case where a user wants to 
invoke a query using the interfaces of the DAS. On the right side of the picture, 
the involved components of OGSA-DAI and their interactions are listed. Based on 

Virolab Deliverable 3.3 A2 – version 1.0 Page 93 of 102



the request, different activities are performed after an authorization mechanism 
has granted access to them.

Figure -53: Use case showing a typical data access request and corresponding interactions with 
OGSA-DAI

They are typically connected with one data resource accessor, which uses a 
database-dependent driver to establish a connection with the underlying 
resource.

When dealing with multiple data providers, each of them usually has its own 
installation of a data access system including the data access service linked with 
an OGSA-DAI data service. The coordination of all these single systems requires 
one central  entry  point,  which acts as  the only “visible”  and accessible  data 
access system, and which hides all other data access systems from the users. In 
theory users should be unaware that they are using a federation rather than a 
single data resource.  Currently,  the DAS offers one specific  functionality  that 
handles a federated query. The main operations are similar to the one shown in 
Figure -53 with the difference that this has to be done many times.

Part 2: 

• Requesting publicly available rule sets

The main usage of the  RequestRuleSets method has already been decribed in 
section 7.2.2 so that only the different steps, which are transparent to the users, 
shall be explained in more detail. The following diagram schematically shows the 
control flow of the RequestRuleSets function in a sequential order.

Virolab Deliverable 3.3 A2 – version 1.0 Page 94 of 102



Figure -54: Control flow of the specific RequestRuleSets method

One can see that the function reverts to OGSA-DAI’s data access capabilities, 
which are used to download files from an online data repository and also for 
storing relevant information in a local database. This local information is used to 
manage the current available and used versions of the rule sets. The diagram 
also illustrates the interactions between the DAS specific components/services 
and the corresponding interfaces offered by OGSA-DAI.

• Storing application-dependent data

Based on the general description in section 7.2.2, the following diagram shall 
explain the internal steps performed during the processing. Depending on the 
current application type, a particular internal application-related function is 
called, which performs relevant data transformation on the values provided. 
Once these data manipulations are finished, the OGSA-DAI functionalities for 
accessing distributed databases are used by the method in order to store the 
values in the corresponding database.

Virolab Deliverable 3.3 A2 – version 1.0 Page 95 of 102



Figure -55: Internal flow of StoreApplicationData method

7.6. PRODUCT TESTING

According to Work Package 4 integration guidelines (specified in  D4.2),  each 
component itself should perform a unit testing procedure for its functions and 
methods. For verifying reliability, efficiency, compatibility, integrity, and usability 
of the DAS functionalities, a set of unit test cases were written and used to check 
the source code including different functions of the API:

• TestServiceInitialization:  Initializes  a  particular  service  and  its  corres-
ponding resource

• TestSourcesAvailability: Checks the availability of particular resources

• TestDataResourceInformation: Collects the meta-data of the resource

Virolab Deliverable 3.3 A2 – version 1.0 Page 96 of 102



• TestSQLStatements:  Performs  different  queries  and  verifies  the  data 
retrieved

• TestRequestRulesets: Checks whether different types of rule sets can be 
requested

• TestSubmitDQ: Tests the submission of queries to multiple data resources

• TestStoreAppData: Tests the storage of application data (Currently only 
for the DRS application)

The GUI of the JUnit toolkit, which is shown in Figure -56, can be used to 
visualize the testing procedure and to facilitate the testing process. One can 
simply load the test class and start the procedure by clicking the ’run’ button.

The screenshot below depicts the successful test of the above explained testing 
routines.

Figure -56: Visualization of DAS unit test cases

7.7. CONTACT INFORMATION AND CREDITS

For  additional  information,  questions,  errors,  bugs  etc.  please  contact  the 
following author:

• Matthias Assel (assel@hlrs.de)

The author also wants to thank all who contributed to this work, in particular:

• Aenne Löhden (USTUTT, Stuttgart, Germany)

• Bettina Krammer (USTUTT, Stuttgart, Germany)

• Stefan Wesner (USTUTT, Stuttgart, Germany)

• Piotr Nowakowski (ACK Cyfronet AGH, Kraków, Poland)

Virolab Deliverable 3.3 A2 – version 1.0 Page 97 of 102

mailto:assel@hlrs.de


Virolab Deliverable 3.3 A2 – version 1.0 Page 98 of 102



ABBREVIATIONS

Fix the list [Tomasz Gubala]

Abbreviation/Term Explanation
AAS Aminoacid Sequence

API Application Programmer’s Interface

ARID Application Run Identifier

CA Certificate Authority

CCA Common Component Architecture

DAC Data Access Client

DAS Data Access Services

DB Database

DEISA Distributed European Infrastructure for Supercomputing

DGE Data Gathering Engine

DO Domain Ontology

DRAM Drug Resistance Associated Mutations

DRE Data Retrieval Engine

DRS Drug Ranking System

DS Distributed Storage

DSS Decision Support System

EGEE Enabling Grids for e-Science in Europe

EPL Experiment Planning Language

FLOWR For-Let-Where-Order by-Return

GOb Grid Object Class

GObI Grid Object Instance

GObID Grid Object Identifier

GObImpl Grid Object Implementation

GOp Grid Operation

GOI Grid Operation Invoker

GPL GNU General Public License

GrAppO Grid Application Optimizer

GRR Grid Resources Registry

GT Globus Toolkit

GT4 Globus Toolkit 4.0

GUI Graphical User Interface

HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

Virolab Deliverable 3.3 A2 – version 1.0 Page 99 of 102



Abbreviation/Term Explanation
IEEE Institute of Electrical and Electronic Engineers

Jar Java Archive

JMX Java Management Extensions

JSR Java Specification Request

JVMTI Java Virtual Machine Tool Interface

LCG LHC Computing Grid

LHC Large Hadron Collider

LOB Large Object

MQL Meta Query Language

NS Nucleotide Sequence

OGSA Open Grid Services Architecture

OGSA-DAI Open  Grid  Services  Architecture  –  Data  Access 
Integration

OGSA-DQP Open  Grid  Services  Architecture  –  Distributed  Query 
Processing

OO Object-Oriented

OR Object-Relational

OWL Web Ontology Language

PDP Policy Decision Point

PROToS Provenance Tracking System

RAD Rapid Application Development

RBAC Role-Based Access Content

RDF Resource Description Framework

RDQL Resource Description Framework Data Query Language

RMI Remote Method Invocation

RPC Remote Procedure Call

SN Storage Node

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SSN Storage Super Node

SSO Single Sign-On

SVN Subversion, a revision control system

TLS Transport Level Security

UML Unified Modeling Language

URI United Resource Identifier

URL Uniform (or Universal) Resource Locator

UTF8 8-bit Unicode Transformation Format

Virolab Deliverable 3.3 A2 – version 1.0 Page 100 of 102



Abbreviation/Term Explanation
ViroLab A  virtual  laboratory  for  decision  support  in  HIV 

treatment

VL Virtual Laboratory

VM Virtual Machine

VO Virtual Organization

VPN Virtual Private Network

WP Work Package

WS Web Service

WS-I Web Services Integration

WSDL Web Services Definition Language

WSRF Web Services Resource Framework

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Virolab Deliverable 3.3 A2 – version 1.0 Page 101 of 102



REFERENCES
[D3.2] ViroLab Project Consortium: Deliverable 3.2 – Design of 

the Virtual Laboratory, 2007

[D3.3] ViroLab Project Consortium: Deliverable 3.3 -  Session 
Manager and runtime system and data layer: 
installation, integration and usage; description of 
interfaces to WP2, WP4 and WP5 – report and 
demonstration, August 2007

[EGEE] Enabling Grids for E-SciencE Project, 
http://public.eu-egee.org/

[LCG2] Antonio Delgado Peris, Patricia Mendez Lorenzo, 
Flavia Donno, Andrea Sciaba, Simone Campana, 
Roberto Santinelli: LCG-2 User Guide Manuals Series, 
EGEE Project Consortium, August 2005

[JRUBY] JRuby – Java powered Ruby implementation, 
http://jruby.codehaus.org

[MOCCATUT] Maciej Malawski: The MOCCA Component Development 
Tutorial, http://mocca.icsr.agh.edu.pl, ICS University of 
Science and Technology AGH, April 2007

[RESBROWDEV] ViroLab Project Consortium: On-line tutorial on 
Adding new context operation to Resources Browser, 
http://virolab.cyfronet.pl/trac/epe/wiki/AddingCont
extActionToGrrBrowser, August 2007

[WTS] Pieter  Libin,  Bart  De  Deckere,  Joris  Van 
Santvoort:  Wts: a  stateful  web service  infrastructure, 
http://wts.sf.net/

Virolab Deliverable 3.3 A2 – version 1.0 Page 102 of 102

http://wts.sf.net/
http://virolab.cyfronet.pl/trac/epe/wiki/AddingContextActionToGrrBrowser
http://virolab.cyfronet.pl/trac/epe/wiki/AddingContextActionToGrrBrowser
http://mocca.icsr.agh.edu.pl/
http://jruby.codehaus.org/
http://public.eu-egee.org/

	Copyright Notice
	1.Introduction
	1.1.Target Audience
	1.2.More Information

	2.Experiment Development Environment Description
	2.1.Experiment Pipeline Idea
	2.2.Defined classes of users
	2.3. More detailed view
	2.4.The experiment process script
	2.5.Grid Objects Abstractions
	2.5.1.Explanation of abstraction levels
	2.5.2.An example

	2.6.Function of the Experiment Repository

	3.Experiment Planning Environment User’s Manual
	3.1.Experiment Planning Environment
	3.1.1.Installation and Configuration
	3.1.2.Usage
	3.1.3.Source Code Access, Bug Reporting and Authors Contact Information

	3.2.Experiment Planning Plug-ins
	3.2.1.Installation
	3.2.2.Virtual Organization Configuration Plug-in
	3.2.3.Resources Browser Plug-in
	3.2.3.1.Configuring Grid Resources Registry browser
	3.2.3.2.Opening Grid Resources Registry browser
	3.2.3.3.Browsing Grid Resources Registry
	3.2.3.4.Inserting code line to EPE experiment editor 
	3.2.3.5.Interaction between Grid Resources Registry browser and Ontology browser plug-ins

	3.2.4.Ontology Browser Plug-in
	3.2.5.Source Code Access, Bug Reporting and Authors Contact Information


	4.Grid Resources Registry User’s Manual
	4.1.Grid Resources Web Browser
	4.2.Adding New Grid Objects
	4.2.1.Preparing your Grid Object
	4.2.2.Functionality 
	4.2.3.Interface 
	4.2.4.Interaction mode 
	4.2.5.Supported technologies and protocols to implement Grid Object 


	5.GridSpace Experiment Developer Library Reference
	5.1.Library Core Reference
	5.2.Data Access Reference
	5.3.Computation Access Reference 

	6.Example Experiments
	6.1.Echo
	6.1.1. Short description
	6.1.2.Detailed code explanation

	6.2.Nucleotide sequence
	6.2.1.Short description
	6.2.2.Detailed code explanation

	6.3.Data Access
	6.3.1.Short description
	6.3.2.Detailed code explanation

	6.4.Alignment
	6.4.1.Short description
	6.4.2.Detailed code explanation

	6.5.LCG Testbed Test Experiment
	6.5.1.Short description
	6.5.2.Detailed code explanation


	7.Data Access Services Prototype Manual
	7.1.Introduction
	7.1.1.References and Source Code

	7.2.Prototype Usage
	7.2.1.Running the Prototype
	7.2.1.1.Operating Requirements
	7.2.1.2.Step-by-Step User Setup

	7.2.2.Basic Operations
	7.2.3.Advanced Features
	7.2.4.Known Problems

	7.3.Interface Reference Guide
	7.4.Troubleshooting Q&A
	7.5.Implementation Structure
	7.5.1.Product Use Cases
	7.5.2.Product Component Model
	7.5.3.Detailed Implementation Model

	7.6.Product Testing
	7.7.Contact Information and Credits

	Abbreviations
	References

