

Deliverable 2.3
ViroLab VO version 1 deployment,

integration with WP3, WP4 and WP5
- report and demonstration

Project Start: 01-03-2006

Project Duration: 36 Months

Priority area 2.4.11

Contract No.: INFSO-IST-033446

Website: http://www.virolab.org

Due-Date: 29-02-2008

Delivery: 14-04-2008

Lead Partner: CYFRONET

Dissemination Level: Public

Status: Final

Approved: Q Board, Project Steering
Group

Version: 1.4

Log of Document

Version Date Changes Summary Authors

0.1 9/01/2008 Initial draft from
template

Maciej Malawski, Pawel
Jarosz

0.2 24/01/2008 Next draft with names Maciej Malawski

0.3 27/02/2008 Added figure showing
integration between
GSEngine and
Shibboleth

Eryk Ciepiela

0.4 28/02/2008 Added description of the
EPE, including features
in version 1, overview of
the integration points
and planned
functionalities part.

Włodzimierz Funika,
Dariusz Król

0.5 28/02/2008 Sections on EMI
integration with
GSEngine and
Experiment Repository
updated

Daniel Harezlak

0.6 28/02/2008 DOS and OntoBrow
sections added

Tomasz Gubala

0.7 28/02/2008 Sections on integration
between Security and
GSEngine

Eryk Ciepiela

0.8 28/02/2008 Sections: Middleware –
features of v.1 -
monitoring and
monitoring/register
integration

Bartłomiej Łabno

0.9 28/02/2008 Section on GRR
integration with EPE
added

Marek Kasztelnik

0.10 28/02/2008 Kuba Wach

0.11 29/02/2008 Input on middleware Tomasz Bartyński

0.12 29/02/2008 Detailed description of
monitoring features of
GSAM, interface
between GSAM and GRR
and scenario of

Bartłomiej Łabno

Virolab Deliverable 2.3 – version 1.4 Page 2 of 83

Version Date Changes Summary Authors

monitoring.

0.13 29/02/2008 Corrections to 4.1 Włodzimierz Funika,
Dariusz Król

0.14 29/02/2008 Corrections to images in
section 4.1

Włodzimierz Funika,
Dariusz Król

0.15 29/02/2008 Input from GridwiseTech

Input about DAS
Integrating documents,
Exec. summary

Pawel Jarosz, Stanisław
Kulczycki, Chris Wilk
Matthias Assel
Maciej Malawski

0.16 29/02/2008 Minor text changes to
EPE fragments

Włodzimierz Funika

0.17 29/02/2008 Update of sections
4.2.2.1 (QUaTRO) and
5.2.3 (GRR/Monitoring)

Bartosz Balis

0.18 1/3/2008 Update of section 5.2.2 Michał Pelczar

0.19 3/3/2008 Middleware diagram,
formatting

Maciej Malawski

0.20 26/3/2008 Major changes in 2,3,5
sections

Pawel Jarosz,

Pawel Plaszczak

0.21 28/3/2008 Input on integration
between EPE and
Shibboleth

Dariusz Król

0.22 28/3/2008 Input on Shibidpclient –
authentication library
enabling handle
requesting for non-Web
clients

Jan Meizner

0.23 29/3/2008 Update of sections 5.2.2
(Provenance/Monitoring)
and 5.2.3
(GRR/Monitoring)

Bartosz Balis

0.24 29/3/2008 Cosmetics Maciej Malawski

1.0 31/3/2008 Producing final draft for
QB

Maciej Malawski

1.1 10/04/2008 Update demo Pawel Jarosz, Pawel
Plaszczak

1.2 10/04/2008 Added EPE demo Maciej Malawski

1.3 10/04/2008 Added EMI description Daniel Harezlak

Virolab Deliverable 2.3 – version 1.4 Page 3 of 83

Version Date Changes Summary Authors

1.3.1 11/04/2008 Conclusions, polishing Pawel Plaszczak

1.3.2 13/04/2008 Corrections to
Presentation Layer

Włodzimierz Funika

1.4 14/04/2008 Final corrections Maciej Malawski

Virolab Deliverable 2.3 – version 1.4 Page 4 of 83

Table of Contents

Executive Summary .. 8
1Overview of ViroLab Virtual Organization .. 9
2Demonstration of the ViroLab VO ... 13

Scenario 1: Finding out the resistance of the virus based on HIV
nucleotide sequence... 13
Scenario 2: Development and execution of an experiment................. 20
Demonstration - Summary.. 25

3Presentation Layer ... 26
Experiment Planning Environment.. 27

EPE Features in Version 1... 27
EPE Integration Points ...30

Integration of EPE with GSEngine..30
Integration of EPE with Domain Ontology Store (DOS)................. 31
Integration of EPE with Experiment Repository............................34
Integration of EPE with Grid Resources Registry (GRR)................ 35

Planned Functionalities in EPE... 39
ViroLab Portal.. 39

Portal Features in Version 1.. 41
Portal Integration Points...42

WAYF and IdP integration...42
Integration of Portal with Provenance (QUaTRO)......................... 42
Integration of Portal with Data Access Service (DAS Portlet)......... 44
Integration of Portal with GSEngine and Experiment Repository.... 48

Planned Functionalities of Portal.. 50
4Middleware ... 51

Features in Version 1 of Middleware..51
Middleware Integration Points ... 53

Integration of Middleware with GSEngine......................................53
Integration of Monitoring with Provenance.................................... 53
Integration of Monitoring with Registry...55
Integration of Middleware with DRS... 57
Integration of Middleware with RegaTools..................................... 57

Planned Functionalities of Middleware..57
5Security ... 58

Features in Version 1 of Security Framework58
Attribute request library (ShibAuthAPI) ..60

ShibAuthAPI at work... 63
ShibRPC .. 64
ShibSVN...65
Shibbolized Axis.. 67
Shibidpclient...70

Security Integration Points.. 71
Integration of Security with GSEngine ... 72
Integration of Security with ExpRepo (ShibSVN)............................ 73
Integration of Security with DAS..73

Virolab Deliverable 2.3 – version 1.4 Page 5 of 83

Planned Functionalities of the Security Framework............................78
Security – Conclusions.. 79

Abbreviations .. 81
References... 82

List of Figures

Figure 1: Overall architecture of ViroLab VO....................................... 12
Figure 2 General flow diagram of the scenario.....................................14
Figure 3 Use case – user goes to the ViroLab portal............................. 15
Figure 4: Use case - user chooses HO.. 15
Figure 5: User enters credentials...15
Figure 6: User chooses the EMI application...16
Figure 7: User chooses the experiment.. 16
Figure 8: User executes the experiment... 17
Figure 9: Access to repository denied for unauthorized user..................17
Figure 10: General sequence diagram of presented scenario................. 17
Figure 11: Detailed sequence diagram for getting the experiment from
repository (step 4, 5 from scenario)...18
Figure 12: Detailed sequence diagram for the experiment execution (steps
6,7 from the scenario)... 19
Figure 13 Detailed sequence diagram for the data retrieval...................19
Figure 14 Scenario of the demonstration involving EPE.........................20
Figure 15 Opening an experiment in EPE from a local file......................21
Figure 16 Error message when no authentication was performed........... 21
Figure 17 Shibboleth authentication plugin in EPE................................22
Figure 18 Importing experiment from Experiment Repository................ 23
Figure 19 Experiment imported from Shibboleth-protected repository.....24
Figure 20 Execution of ClassifierComparison experiment using GSEngine25
Figure 21: Presentation Layer, and integration point with other elements
.. 26
Figure 22 (on the left): Update manager with available ViroLab EPE plugin
.. 28
Figure 23 (on the right): Authentication dialog.................................... 28
Figure 24: Script editor and an outline view..29
Figure 25 (on the left): Creating a new repository connection30
Figure 26 (on the right): Selecting an experiment from the repository to
import... 30
Figure 27: The procedure of adding the GSEngine to the EPE................ 31
Figure 28: The updated DOS use cases.. 32
Figure 29: The updated and decomposed use case for data query
generation..33
Figure 30: Relationship between the EPE and the ViroLab portal............ 35
Figure 31: New release dialog...35
Figure 32: GRR integration points..36

Virolab Deliverable 2.3 – version 1.4 Page 6 of 83

Figure 33: Integration between GRR and EPE – inserting a code line to the
editor.. 37
Figure 34: Integration between GRR browser and Ontology browser –
semantic search..38
Figure 35: Integration between Ontology Browser and GRR browser –
searching registry contents with concrete meaning.............................. 38
Figure 36 Portal architecture...41
Figure 37 QUaTRO and context architecture..42
Figure 38 Available resources in DAS portlet....................................... 45
Figure 39 DAS authorization required...46
Figure 40 Inserting security token... 47
Figure 41 Accessible resources in DAS Portlet..................................... 47
Figure 42 Table of contents in DAS Portlet.. 48
Figure 43 Experiment Management Interface incorporated in the
Gridsphere environment presenting part of the Repository View............ 49
Figure 44 EMI integration points with Grid Space Engine and Experiment
Repository..50
Figure 45 Overview of ViroLab middleware... 51
Figure 46 Monitoring data collection process....................................... 54
Figure 47: Communication between Grid Resources Registry and
monitoring system.. 55
Figure 48: Scenario of GSAM services monitoring and interaction with
GRR.. 56
Figure 49: Security integration points.. 60
Figure 50 ShibRPC flow diagram..65
Figure 51: Authorization to Shibboleth-enabled SVN repository diagram.67
Figure 52 Integration between GSEngine and Shibboleth security
infrastructure..72
Figure 53 The WS-Resource factory pattern.. 74
Figure 54 Common ViroLab use case..76
Figure 55 Components involved in a data access process flow............... 77
Figure 56: The authentication plugin..78

Virolab Deliverable 2.3 – version 1.4 Page 7 of 83

Executive Summary

This document describes the current status of ViroLab virtual organization
in Version 1, which was reached after the second year of the project. The
system, as presented in this document, has been deployed in a widely
distributed installation, covering components and resources located at
facilities of several consortium stakeholders.

Section 1 of the document introduces the main concepts of attribute-
based Virtual Organization model, together with the presentation and
middleware layer, as well as the security infrastructure based on
Shibboleth.

The demonstration of ViroLab VO (Section 2) shows how the modules are
integrated with the security infrastructure: the user logs in into ViroLab
portal and is authenticated using Shibboleth, then is able to browse
experiment repository and execute experiments using integrated
Experiment Management Interface (EMI). The EMI is integrated with
GSEngine (developed in WP3), which is able to contact data sources and
invoke remote operations using the middleware layer. It is also possible
for experiment developer to create and edit experiment plans using
Experiment Planning Environment (EPE).

Current version of presentation layer (Section 3) includes a GridSphere-
based portal which is integrated with the security infrastructure and
includes Web applications for Data Browsing, Experiment Management and
Provenance querying. The EPE integrates plugins for experiment
repository browsing, execution using GSEngine, Registry and Domain
Ontology Store browsing and editing.

Middleware layer (Section 4) includes access to computing resources and
supports such technologies as Web Services, MOCCA components, EGEE
jobs and initial support for WSRF services. The middleware was integrated
with WP3 (GSEngine) and supports ViroLab applications (WP4, WP5) such
as Drug Ranking System (as a Web Service) and RegaDB Tools
(alignment, subtyping) using WTS services. Middleware layer includes also
support for infrastructure monitoring and the integration with Provenance
system is under development.

Security in ViroLab (Section 5) is based on Shibboleth, providing single-
sign on for Portal access and attribute-based access control. Attribute
request library has been implemented, integrated with Experiment
repository and Apache Axis for Web services. GSEngine includes support
for delegating Shibboleth credentials and using them to access Shibboleth-
secured Data Access Service (DAS) and Experiment Repository.

Virolab Deliverable 2.3 – version 1.4 Page 8 of 83

1 Overview of ViroLab Virtual
Organization

The foremost technical challenge in ViroLab is to provide a communication
fabric that connects all partners in a secure, efficient and transparent way.
In the envisioned environment, there is space for several user roles,
different tasks and duties. There are also many distributed resources that
require access control, with optimally scalable and flexible security
patterns.

To start with, let us elaborate on the concept of a Virtual Organization
(VO), which is an idea that is at the foundation of modern Grid
architectures. In short, a VO is a security domain extended over a set of
entities (individuals, services, resources), allowing them to establish and
maintain a mutual trust relationship. VOs are used to interconnect
members of different physical institutions and organizations. Membership
to the VO is not constant – it can be enabled and disabled at any time. For
example, two entities (i.e. Doctor A and hospital B) within the same VO
can dynamically establish each other’s identity and start secure
communication, even if they had no prior knowledge of each others
existence.

The example shows that a VO is a very powerful, yet abstract concept.
There has been much effort from the Grid computing community, although
is often not fully implemented. Over the past decade, most European grid
installations have implemented VOs using derivatives of the Grid Security
Infrastructure (GSI) package, which originated from the Globus project.
GSI-based VOs integrate well with local certificate-based security
schemes, but generally miss the dynamic nature that is at the core of the
VO concept.

It should also be noted that a VO is sometimes understood in its broader,
common-language sense. Its intuitive meaning, generally refers to all
aspects of IT technology, allowing parties from different institutions to
communicate remotely and securely. Such should be the understanding
of the title of ViroLab’s Work Package 2, which is not only about a security
layer, but also encompasses work on the layers of presentation and
middleware (both closely integrated with security). It is the combination of
these three layers that enables users to interact transparently and
securely with their work environment.

Virolab Deliverable 2.3 – version 1.4 Page 9 of 83

ViroLab implements a VO in a novel and, in our opinion, powerful way.
ViroLab VOs are truly dynamic and truly scalable. We consider this
approach, and the fact of its successful implementation as an important
achievement of WP2.

However, as this document is intended to focus on the technology used in
the security layer, we will use the term VO in its primary meaning “ a
collection of entities united by mutual trust”.

The security primitives at ViroLab must cater for three types of users
[D3.2]:

Experiment developer – main task is to plan, design, implement and
provide scientific experiments conducted on the Grid infrastructure.
Requires programming knowledge as well as possessing domain-specific
knowledge.

Experiment user – executes the implemented experiments,analyzing and
managing the obtained results. This user is commonly a scientist with in-
depth knowledge of the domain.

Clinical virologist mainly interested in obtaining drug ranking reports
based on selected rule sets and input in the form of lists of virus
mutations.

Each of the above mentioned user roles has specific needs in terms of
applications, services and data. This brings us to the natural – and very
pragmatic – use of the Virtual Organization abstraction:

As clinical virologists share a common goal, no matter which physical
organization they are from, they could belong to the same “virologist VO”.
The same applies to other roles in ViroLab. On the other hand, experiment
developers and users need to have access to the actual clinical data;
therefore, they need to belong to a separate “clinical data VO” that gives
them the required privileges.

Here we should stress that the security implementation in Virolab allows
for very easy set up of unlimited number of VOs in various configurations.
The three VOs (developers, users, virologists) that we have currently set
up serve as example groups for system validation, but do not prevent
from creating new ones at any point in time.

A typical scenario is as follows:

A Hospital in Rome acts as a resource provider that stores sensitive
patients data. A virologist from the University of Amsterdam would like to
execute their experiments using the patient data. The Hospital in Rome
regulations will only accept professional virologists from associated
universities as trusted users.

From this scenario we can view the Hospital in Rome as a Resource
Provider and the University of Amsterdam as a Home Organization.
Thanks to the virologist VO membership, the scientists from Amsterdam
can get access to the secured, historical patient data from Rome. Once the

Virolab Deliverable 2.3 – version 1.4 Page 10 of 83

A ViroLab VO is a group of entities (typically users) that share legitimate
need to access similar resources (typically, applications or data). VO
membership can be further restricted by other characteristics (attributes)
common to the group of entities.

administrators of the Hospital in Rome decide to deny access to that group
of users, they ban the Virologist VO in their policies. Alternatively, when
the virologist at the University of Amsterdam changes positions, her Home
Organization would update her profile so she automatically looses
membership in the Virologist VO.

In this model, the key authority responsible for granting users the VO
membership is their Home Organization, while the resource access is
additionally controlled by the resource owner. The resource owner can
apply per-VO access policy, but other, stricter or more complex access
policies are possible and equally easy to implement (per user, per user
role, or per user’s home institution). In summary, the ViroLab architecture
provides the following features:

1. access to Virtual Laboratory functionality using the ViroLab Portal;

2. users belong to their Home Organization and these institutions are
responsible for user authentication;

3. for all activities in Virtual Laboratory a user is transparently
identified by a verifying the users authentication;

4. a resource can be secured by configuring a authorization policy and
including an appropriate security module;

5. there is an external tool for experiment management (creation,
edition) which is an Eclipse RCP application – Experiment Planning
Environment (EPE);

6. there is sophisticated middleware which provides access to
computation power and monitoring

The overall software architecture consists of three layers presented as
(from top to bottom):

• Presentation Layer - provisions system functionality to the user by
means of two graphical interfaces: Portal for users (experiment
users as well as clinical virologist), and EPE for experiment
developers.

• Security Layer - provides access control, secure identity
management and data protection.

• Virtual Laboratory - also called the application layer and is the
lowest layer It contains applications, data and simulations together
with the runtime library, provenance and monitoring modules.

Virolab Deliverable 2.3 – version 1.4 Page 11 of 83

Figure 1: Overall architecture of ViroLab VO

Virolab Deliverable 2.3 – version 1.4 Page 12 of 83

2 Demonstration of the ViroLab VO
To demonstrate how Virtual Organization is created in ViroLab, two typical
scenarios is presented.

The first one involves a user such as a virologist working via a portal, and
the second one shows the experiment developer working with Experiment
Planning Environment.

Scenario 1: Finding out the resistance of the
virus based on HIV nucleotide sequence
User: Clinical Virologist

Goal: User would like to learn about resistance of a particular virus
mutation.

Scenario:

1. User opens the ViroLab portal (https://virolab.gridwisetech.pl)
(Figure 3).

2. User chooses his/her Home Organization (Figure 4).

3. User enters his/her credentials in order to proceed with the
authentication (Figure 5).

4. User chooses the Experiment Management Interface (EMI) portlet
(Figure 6).

5. User chooses the experiment which he/she would like to run
(Figure 7) (geno2drs - this experiment takes a HIV nucleotide
sequence, aligns it with respect to a reference strain, detects its
subtype, then finds mutations in an indicated region and, finally,
runs the ViroLab Drug Ranking to learn about resistance of the
virus).

6. User runs the experiment and provides the HIV nucleotide
sequence (Figure 8).

7. After a while, user gets the results of the experiment.

Alternative scenarios:

If user is not eligible to access to ExpRepo (repository of experiments), he
or she would receive the “access denied” message (Figure 9)

Virolab Deliverable 2.3 – version 1.4 Page 13 of 83

https://virolab.gridwisetech.pl/

Figure 2 General flow diagram of the scenario

The Figure 2 presents the general flow of the scenario. Users using portal
first use their Home Organization in order to authenticate. Next the
application is executed and resources invoked. In order to acces each
resources attributes are requested from user HO.

Virolab Deliverable 2.3 – version 1.4 Page 14 of 83

Figure 3 Use case – user goes to the ViroLab portal

Figure 4: Use case - user chooses HO

Figure 5: User enters credentials

Virolab Deliverable 2.3 – version 1.4 Page 15 of 83

Figure 6: User chooses the EMI application

Figure 7: User chooses the experiment

Virolab Deliverable 2.3 – version 1.4 Page 16 of 83

Figure 8: User executes the experiment

Figure 9: Access to repository denied for unauthorized user

The beauty of a good IT architecture lies in its most complex features
being totally transparent to the user. This is also the case here. There are
three places in the presented scenario where such advanced operations
are performed.

Figure 10: General sequence diagram of presented scenario

The Figure 10 presents the general sequence diagram of the scenario. The
first sensitive step is Authentication (steps 1, 2, 3 from the scenario).
Then the retrieval experiments from the repository (steps 4, 5) and,
finally, the execution of the experiment (steps 6, 7).

Virolab Deliverable 2.3 – version 1.4 Page 17 of 83

The user entering his/her password in step 3 has no idea of the complex
process he/she puts in motion. Firstly, the user chooses the Home
Organization which he/she belongs to. Then the mechanisms at the site of
Home Organization are run. The user credentials are checked with local
databases. If the user is authenticated, the handle (identifying data) is
created and sent back to the portal.

If the user would like to get the experiment, he/she is checked for
privileges. If the user’s attributes fit with the policy set for the repository,
he/she will get access to the experiment. At Figure 10 this process is
presented in detail.

Figure 11: Detailed sequence diagram for getting the experiment from

repository (step 4, 5 from scenario)

In order to get the experiment, ExpRepo module (Experiment Repository)
has to authorize the user. The ShibSVN is invoked to perform that. The
ShibSVN connects with Home Organization of the user (GridwiseTech in
particular in this example) to get the attributes describing the user. Based
on that attributes and policy set for repository, the authorization decision
is made. If the user is authorized, the experiment is downloaded from
repository and sent to the portal. The process for the presented scenario
enables an unauthorized user to get access to the experiments.

Another point after the retrieval of the experiment is its execution (Figure
11). If the user chooses the option to execute the experiment, the latter is
sent to GSEngine module (responsible for applications execution). The
experiment may consist of several operations, including those which are
invoked remotely. Such remote services can also be secured. In such a
case the execution of them is preceded by the authorization process. In
this case the module responsible for authorization is ShibAuthAPI, and its

Virolab Deliverable 2.3 – version 1.4 Page 18 of 83

behavior consists in getting the user attributes from his/her HO and then
making the authorization decision.

Figure 12: Detailed sequence diagram for the experiment execution (steps 6,7
from the scenario)

During the experiment execution the data is retrieved from the data
center. It is important that the data is secured as well. When experiment
try to get the data the same process as presented when accessing the
service is performed. The data is always received via the Data Access
Services (DAS). At Figure 12 the detailed sequence for the data retrieval is
presented.

Figure 13 Detailed sequence diagram for the data retrieval

Virolab Deliverable 2.3 – version 1.4 Page 19 of 83

Scenario 2: Development and execution of
an experiment
The ViroLab Virtual laboratory provides advanced tools for experiment
developers, who are scientific programmers collaborating with domain
researchers on preparation and execution of experiments. The Experiment
Planning Environment provides and advanced user interface for
experiment development, sharing with the use of Experiment Repository
and execution using GSEngine on the resources accessible via Middleware
layer.

In this scenario, we demonstrate how these subsystems of ViroLab VO
work together in a secure way, using Shibboleth-based security
infrastructure.

The scenario has the following steps:

1. User launches the EPE and opens an experiment from a local file
(Figure 15).

2. User tries to execute the experiment using GSEngine. Since no
authentication was performed yet, the user gets a warning message
and execution cannot proceed (Figure 16).

3. User authenticates using Authentication plugin (Figure 17).

4. User fetches the experiment from experiment repository (Figure 18
and Figure 19), access is provided using Shibboleth handle obtained
earlier from authentication plugin.

5. The experiment can now be executed (Figure 20).

The schematic diagram of the scenario is shown in Figure 14 and the
details of the steps are described in the subsequent paragraphs.

Figure 14 Scenario of the demonstration involving EPE

Virolab Deliverable 2.3 – version 1.4 Page 20 of 83

First, the user can open EPE, where it is possible to open and edit
experiment scripts, saving and loading them from the local files. The
Figure 15 shows a sample experiment opened in a script editor: the
tutorial-like script demonstrates how to access Web services using
GridObject library provided by GridSpace engine.

Figure 15 Opening an experiment in EPE from a local file.

When the user clicks on the “Execute experiment” button, the error
message is shown (Figure 16). This means that it is not possible to
execute experiments via GSEngine, if no proper authentication with the
Shibboleth infrastructure was performed.

Figure 16 Error message when no authentication was performed

In order to execute the experiments, the user needs to authenticate using
the Shibboleth authentication plugin, initiated by clicking on the “AUTH”
button. The login dialog appears (Figure 17), where user has to select the

Virolab Deliverable 2.3 – version 1.4 Page 21 of 83

Home Organization (WAYF – Where Are You From), and provide the login
and password to the selected Identity Provider. The password can be
optionally saved for convenience. After successful login, the security token
(Shibboleth handle) is stored in the EPE and from now on it can be used to
access protected resources.

Figure 17 Shibboleth authentication plugin in EPE

One of the resources of ViroLab VO protected by Shibboleth-based
security system is the Experiment Repository. It allows sharing the
experiment scripts between the users, for both development and
publishing purposes: the released experiments are available through the
portal.
When launching experiment import wizard (Figure 18), the security
credentials are already present, since the user was successfully
authenticated before. Therefore the user does not have to insert any
additional security information; the authentication is performed
automatically by EPE using the security token obtained before.

Virolab Deliverable 2.3 – version 1.4 Page 22 of 83

Figure 18 Importing experiment from Experiment Repository

After fetching the experiment from the repository, the user can work on it
in the EPE. In Figure 19 we can see a sample experiment which involves
comparison of several classification algorithms available from Weka
library, wrapped as MOCCA [MOCCA] components.

Virolab Deliverable 2.3 – version 1.4 Page 23 of 83

Figure 19 Experiment imported from Shibboleth-protected repository

The EPE enables to execute the experiments directly using GSEngine. This
time when the user clicks the “Execute” button, there is no security
warning, since the authentication was already done. Therefore the EPE can
contact the GSEngine and the execution on the computing infrastructure
can proceed using the appropriate middleware. The user can watch the
output directly in the EPE (Figure 20).

Virolab Deliverable 2.3 – version 1.4 Page 24 of 83

Figure 20 Execution of ClassifierComparison experiment using GSEngine

Demonstration - Summary
The scenarios presented in this section include examples of non-trivial
behavior of the ViroLab. In order to make the operations invisible for
users, providing the demanded security level at the same time, a
significant amount of work had to be performed.

All the modules which were referenced in this description are described in
detail in the following sections.

Virolab Deliverable 2.3 – version 1.4 Page 25 of 83

A very important achievement of WP2 is that very complex operations of
authentication, authorization, access to resources are hidden for an
ordinary user who is only interested in the application level.

3 Presentation Layer
ViroLab provides several useful functionalities for clinicians, virologists and
scientists. In order to make them use ViroLab, it is very important to
create simple, user-friendly and functional presentation tools [EPEMI].

The presentation layer consists of two main user tools: portal for
accessing all applications by experiment users or clinical virologists and
Experiment Planning Environment (EPE), which is a developer tool for
creating the experiments. The Portal is the main entry to all functionalities
provided by Virtual Laboratory (VL) (e.g. retrieving virus genotypic
information from remote Dbs or finding out the resistance of the virus
based on HIV nucleotide). The EPE is the external application based on
Eclipse, which provides flexible and convenient functionalities for
experiments creation and edition. Implementation and functionality details
of this means of VL access are described in the following sections.

The diagram in Figure 21 presents the integration points of Portal and
EPE. There are two modules (GSEngine and Experiment Repository
(ExpRepo) which are integrated with Portal as well as with EPE. The
integration of other elements is specific to Portal and EPE. DAS (Data
Access Services) and Provenance are the elements integrated with Portal
and specific applications in there. DOS (Domain Ontology Store) and GRR
(Grid Resource Registry) are the integrated modules for EPE. All Home
Organizations are integrated with the portal to provide possibility for
federated authentication.

Presentation Layer

EPEPortal

GSEngine ExpRepo

DOS

GRR

HO1 HO2

HO3

Provenance

DAS

Figure 21: Presentation Layer, and integration point with other elements

Virolab Deliverable 2.3 – version 1.4 Page 26 of 83

Experiment Planning Environment
In the ViroLab project the users of the virtual laboratory are divided,
based on different expectations, into two main groups (roles):
experiments developers and experiments users. Thus it is crucial to
provide both classes with dedicated tools that address their specific needs.
In case of the experiment developers Experiment Planning Environment
(EPE) is such a tool. Its main goal is to support the whole process of
building experiments, from creating new experiments with a default
structure, through the development stage up to publishing them into the
Experiment Repository, since experiment users are enabled to run them
through the ViroLab portal.

In addition to technical aspects of creating new experiments, it is
important to remember about relationships between the experiment
developer and the experiment user. For that purpose the EPE contains
facilities for exchanging feedback information related to a certain
experiment, e.g. any defects found.

Security issue has to be taken into consideration, especially when many
different organizations do not necessarily want to share their resources
with everybody (e.g. data on patients). Being integrated with the
Shibboleth security middleware, the EPE provides a user-friendly wizard
which eases the authentication process.

EPE Features in Version 1
From the architectural point of view the EPE is divided into small pluggable
components called plugins which have individual responsibility. However
separation based on plugins is too fine-grained for easy management.
Therefore they are gathered into groups, called features, of logically
related plugins in order to solve a certain problem.

The current version of the EPE consists of three main modules:

a) The core which is used to manage plugins from the environment. From
the user’s point of view the most usable feature is the update manager
(Figure 22). It allows downloading new plugins which will extend the
environment with new functionalities, or download new versions of the
currently used plugins. The authentication plugin (Figure 23) is also
part of the core feature. To authenticate the developer has to select the
WAYF organization and provide credentials information such as login
and password. By clicking the “Login” button the authentication process
will be performed using the Shibboleth middleware. After successful
authentication it will be possible to connect to the Experiment
Repository and to use the resources owned by the selected
organization.

Virolab Deliverable 2.3 – version 1.4 Page 27 of 83

Figure 22 (on the left): Update manager with available ViroLab EPE plugin
Figure 23 (on the right): Authentication dialog

b) The GScript Development Tools feature that provides facilities for
writing easily new experiments. To plan a new experiment the
developer uses a special script language (GScript) based on the JRuby
programming language. Therefore EPE contains a powerful script editor
with syntax highlighting and code assistance features (Figure 24).
Besides the editor the experiment developer can use an outline view for
locating various script objects such as variables, classes or methods.
After having developed a part of script it is possible to execute it in
order to test it and observe how it works using GSEngine [see the
“Integration points” section for more details].

Virolab Deliverable 2.3 – version 1.4 Page 28 of 83

Figure 24: Script editor and an outline view

c) The Experiment Repository feature contains plugins which are
responsible for performing operations on the repository. It is a common
situation when a project (in the Virtual Laboratory it is an experiment)
is built by a team of developers. Therefore it is crucial to share the
code between team members in a standard, user-friendly way. This
feature addresses the issue by providing facilities for:

• creating a connection (Figure 25) to the repository,

• import (Figure 26) and export experiments,

• releasing new versions of the experiment.

Also exchanging information between the experiment developer and
the user is performed through the repository, so it should be
transparent to the developer.

Virolab Deliverable 2.3 – version 1.4 Page 29 of 83

Figure 25 (on the left): Creating a new repository connection
Figure 26 (on the right): Selecting an experiment from the repository to import

EPE Integration Points
As already mentioned the EPE is part of the ViroLab presentation layer.
One of its goals is to provide user-friendly interfaces for components that
are helpful in the experiment development process but lay in tiers beneath
the presentation one. In addition these are often command line tools with
complex usage syntax therefore using them can be difficult especially for
inexperienced developers. For some of such components the EPE provides
‘built in’ integration points. In order to use them the developer has to
provide some basic information such as location (see GSEngine
subsection). Another possibility to integrate EPE with external components
is downloading, through EPE update manager, dedicated plugins which will
provide Graphical User Interface for a certain component (see the DOS
plugin or GRR browser section). Below there is an available list of the most
important integration points in the EPE.

Integration of EPE with GSEngine
EPE uses GSEngine [Ciepiela07] as a local script interpreter. The ja-
va.lang package is the current way how EPE calls GridSpace Engine Com-
mand Line Tools. The operating system process which represents a call of
the ‘gsel’ or ‘gsec’ executable, is wrapped into the java Process object.
To make this more user-friendly the standard streams from the java pro-
cess are redirected to the built-in EPE console.

From the user point of view, the only thing to be done (besides installing
the GSEngine correctly) is to provide in the EPE information about GSEn-
gine executables location. The user can have many GScript language in-
terpreters reported and use different interpreters for different situations.
After deciding on which GScript interpreter should be used, the user can
execute experiments with the “Run as experiment” operation. The whole
procedure is presented in Figure 27.

Virolab Deliverable 2.3 – version 1.4 Page 30 of 83

Figure 27: The procedure of adding the GSEngine to the EPE

The next step in the integration procedure between the EPE and the
GSEngine will be to provide the GSEngine client plugin for the EPE. Its
main goal is to relieve the user from the necessity to provide information
about the GScript interpreter prior to its use.

Integration of EPE with Domain Ontology Store (DOS)
The main purpose of the Domain Ontology Store (DOS) is to maintain the
common model of the application domain of the ViroLab Virtual
Laboratory. The semantic models of stored inside DOS form a natural
integration mechanism for modules, services and tools that build the
virtual laboratory. The models are divided into submodels taken into
consideration both generality and purpose. The domain knowledge is
modelled and represented with ontologies and DOS contains these
ontological models in a non-volatile storage and provides both read and
write access. For the detailed design of DOS, see Section 6.1.3 of [D3.2].
The realization of DOS inside ViroLab is deployed in a Sesame OpenRDF
[SESAME] server and the models are stored in a persistent database
inside a MySQL DBMS system.

One of the main recipients of the content stored inside DOS is the
Ontology Browser Plugin (sometimes called OntoBrow for short). It is a
tool deployed inside the Experiment Planning Environment. This plugin is
provided for the developers of experiment to help them find appropriate
external services and data elements (that could form newly developed
experiments) by task-oriented semantic content search (see Figure 28).
Please note a slight update of the use cases diagram with regard to the
Section 4.3.1 of [D3.3] mainly due to altered data search use case.

Virolab Deliverable 2.3 – version 1.4 Page 31 of 83

Ontology user
(developer or

scientist)

Search for Grid
Object Class

Search for Data
Schema

Search for
Transformation

Domain Ontology Store

VL Administrator
Create
Model

Alter
Model

<<include>>

Generic, administrative use cases

ViroLab specific use cases

Generate Data
Query

<<include>>

Figure 28: The updated DOS use cases

There are four main integration points for the OntoBrow Plugin:

• connection with DOS as the model taxonomies source

• integration with Resources Browser Plugin inside EPE for Grid Object
lookup use case

• integration with the remote Data Access Client façade for data
schema retrieval

• integration with the experiment editor within EPE for data query
generation.

The paragraphs below explain the status of integration of all these points,
staring with the oldest and the most stable ones and finishing with the
new additions.

Ontology Browser and Domain Ontology Store are connected with an
OpenRDF protocol implemented on top of the HTTP protocol stack. It
supports several basic actions like retrieval of available models and
querying of a specific model with a chosen querying language (three
languages are supported out of which the Ontology Browser uses SeRQL
[SeRQL] option as it well suits the submodel retrieval requirements of the
plugin. The interesting parts of the model are returned, usually for
ontologies, in a triple set form and are subsequently parsed into a graph-
like structure on the client side. The structure is then displayed for the EPE
user in a graphical widget. This link is implemented since the first
prototype of the Virtual Laboratory (as stated in Section 4.3.2 of [D3.3])
and is being maintained (optimized, fixed where necessary) since then.

Virolab Deliverable 2.3 – version 1.4 Page 32 of 83

The Ontology Browser uses internal Eclipse RCP mechanisms (called
extension points) for integration with another pieces of EPE, namely with
the Resources browser Plugin and the current experiment code editor. The
first integration mechanism was already present inside the first prototype
of the system (see Section 4.3.2 of [D3.3]). Briefly, it provides two
important use cases of the Ontology Browser, namely semantic Grid
Object and transformation search (see Section 6.1.3.4 of [D3.2]). It
allows the developer to find suitable operations available in remote
computation services that would semantically fit the desired input, output
or both input and output data. The integration with the experiment editor
is explained below, together with the DAC facade link.

The integration with the Data Access Client facade is required to support
another crucial Ontology Browser use case of the data schema search
scenario (see Section 6.1.3.4 of [D3.2]). In the process of detailed design
the scenario presented originally in the Design Deliverable was slightly
altered to explicitly distinguish between data schema retrieval and data
query creation phases (see Figure 29).

This part may be performed at startup

Data Query Generation subcase

 : Experiment developer Domain Container

Ontology Browser
Plugin

Ontology Store
Facade

Generic Data
Access Client

Experiment Editor

1 : invoke

2 : getDataModel(domain name)
3 : getDataModel()

4 : dataModelDocument
5 : dataModelDocument

6 : parseModel(dataModelDocument)

7 : showModel

{some time elapses}

8 : pick(dataConcept)
9 : getDataSchema(dataConcept)

via Experiment
Planning Environment

10 : dataSchemaDetails

11 : constructQuery(dataSchemaDetails)

12 : putQueryIntoCode(query)

Figure 29: The updated and decomposed use case for data query generation.

Here one may clearly see the three stages of data query creation:

Virolab Deliverable 2.3 – version 1.4 Page 33 of 83

1. the user chooses a semantic concept of the modeled domain that
represents the type of data one likes to analyze within an
experiment (e.g. a VirusNucleotideSequence),

2. the plugin requests the remote DAC to find out how this concept is
represented in data sources available to ViroLab experiment
developer,

3. with the details obtained of the concept’s representation a query
that would retrieve the desired data (here, the sequences) is
generated and inserted into the code.

To deliver the functionality mentioned in points 2 and 3 two different
integration links had to be implemented. First, the Ontology Browser uses
a dedicated DAC facade protocol to ask for the current data schema. The
input is the mapping of semantic concept into a name in the data sources
and the output lists what attributes and of what data type there are
present in the available data sources.

Having that information at its disposal the plugin generates a proper query
stub that would eventually ask (at the experiment runtime) for the
required data. The stub is generic and may be further tuned by the
programmer in the experiment code (for instance it is impossible for the
tools to guess certain constraints of the query - the developer needs to
define those by himself). In order to insert the newly-generated query
stub into the code of experiment, the Ontology Browser uses the
extension points defined in the GridSpace extension points API (see
specific explanations in the Grid Resources Registry subsection 3). The API
allows to find the present experiment editor and to inject some source
code in the current position.

Integration of EPE with Experiment Repository
As mentioned above, the plugins related to the Experiment Repository
constitute one of the core EPE features. The main reason for this is the
importance of relationships between the EPE, the Experiment Repository
and the ViroLab portal. It can be mapped onto the relationships between
an experiment developer and experiment user, as shown in Figure 30. In
order to make an experiment visible for the scientists within the portal,
the experiment developer has to make a release. It is performed with a
user-friendly wizard, which needs from the EPE only a version name of the
release (optionally a comment can be provided) (Figure 31).

Virolab Deliverable 2.3 – version 1.4 Page 34 of 83

Figure 30: Relationship between the EPE and the ViroLab portal

Sharing an experiment and working on the same project by a group of
developers is done in the similar manner as with the SVN repository. First,
the experiment has to be exported to repository and imported by each
member of the group. This is a mandatory procedure, otherwise a
connection with the repository will not be established and no changes will
be enabled to be made to the repository. After this stage a copy of the
experiment exists locally on each developer machine. Developers can now
submit changes to the repository with the commit operation or retrieve
any changes from the repository with the update operation. When the
experiment comes to a stage when it is stable enough for using, it can be
published as described above.

Figure 31: New release dialog

Integration of EPE with Grid Resources Registry (GRR)
Grid Resources Registry stores information about all computational
resources that are available in the virtual laboratory. It helps the
developer to create an experiment script by hiding the complexity of used
technology. The registry is integrated with Experiment Planning

Virolab Deliverable 2.3 – version 1.4 Page 35 of 83

Environment and Ontology Browser plugin thanks to Resources Browser
plugin (see Figure 32).

Figure 32: GRR integration points

Resources Browser plug-in is a user interface for the registry. It allows
browse and manage the whole content of the registry: packages, Grid
Objects, its methods, documentation, implementations, and instances (for
more information and a tutorial about Resources plugin please see
manuals attached to the [D3.3] and [VIROLAB-VL]). It is integrated with
other components through Eclipse extension points:

o epe.code.inserted defined by the
cyfronet.gridspace.api.epe.ICodeInserter interface: it is
implemented by the EPE experiment script editor. It allows to insert
text into a currently edited experiment file which means that the
user can insert a code line responsible for creating a new Grid
Object by simply double clicking on the Grid Object in Resources
Browser (see figure Figure 33).

o grrbrowser.contextmenu.items defined by the
cyfronet.gridspace.api.grr.ICtxMenuItemProvider: during the
runtime when the user performs a right click on the object
presented in the Resources Browser all implementations of this
extension point is found and asked if there are any additional menu
items that should be added to context menu. Thanks to this
extension point, the Ontology Browser plugin is able to add
additional items to the menu that allow to search for a concrete
parameter meaning in a particular domain (see Figure 34).

o grrbrowser.search defined by the
cyfronet.gridspace.api.grr.ISearch interface: it is
implemented by the Resources Browser plugin. As a result, it allows
other plugs-in to search for and show a specified content from the

Virolab Deliverable 2.3 – version 1.4 Page 36 of 83

registry. This functionality is used by the Ontology Browser plugin
(see Figure 35).

Figure 33: Integration between GRR and EPE – inserting a code line to the
editor

Virolab Deliverable 2.3 – version 1.4 Page 37 of 83

Figure 34: Integration between GRR browser and Ontology browser – semantic
search

Figure 35: Integration between Ontology Browser and GRR browser – searching
registry contents with concrete meaning

Virolab Deliverable 2.3 – version 1.4 Page 38 of 83

Planned Functionalities in EPE
While already providing many useful facilities that support the experiment
development process, the EPE is still in its prototype phase. Therefore
there is a lot of work to be done in order to complete the environment.
The most important tasks are:

a) code assistance – due to being one of the most helpful features of
every powerful programming language editor, it should be done with
care of every detail. In the current version of the EPE, the code
assistance feature is already available however only in a basic form
(e.g. language keywords and control structures). In the final version,
provided suggestions will also encompass Grid Objects and their
methods available from within the Grid Resource Registry.

b) integration with the GSEngine - although it is already possible to use
the GSEngine for executing experiments, to make it even more simple,
the GSEngine plugin should be integrated into the EPE. Currently, in
order to use the GSEngine (either in local or remote mode) the
developer needs to point the location of the GSEngine executables. The
plugin will enable to avoid even this step by setting-up the default
interpreter to the integrated one.

c) improved collaboration between the experiment developer and user -
the information exchange process between the EPE and the portal is
performed in the well known manner of submitting tasks, to a certain
experiment by the experiment users, on the one side and by answering
them on the other side. It will be done through a dedicated editor
inside the EPE that will present information about available tasks in a
user-friendly way.

ViroLab Portal

Portal implementation for ViroLab is based on a popular open-source
portlet-based web portal framework - GridSphere. The idea of the portal is
to provide a single sign-on (SSO) access to the underlying services. The
end user should be able to achieve as much as possible in terms of
operating applications, without the knowledge of complex, distributed
technologies which underpins the system. The main advantage of
GridSphere is the fact that it provides a simple interface for developing
new applications, which can be deployed and administered within the
portlet container. Every portlet developed for the portal has consistent
look-and-feel, so it is relatively easy to learn and use new portlets on the
fly, even for a non-experienced user.

The diagram in Figure 36 presents the current architecture and
functionality of the portal and integrated elements. As it can be noticed,

Virolab Deliverable 2.3 – version 1.4 Page 39 of 83

the portal is responsible for interactions with the user, access to all
services and data visualization. All computations are distributed to
resource providers. The access to services is done by passing requests
with credentials to underlying services.

The user accesses the portal using his/her web browser. In order to start
work, the user is redirected to his/her Home Organization providing
authentication (step 3 in the “finding out the resistance” scenario). The
authenticated users can take advantage of all the applications provided by
the Portal. The Portal is responsible for redirection to the proper Home
Organization, display of the application portlets, and then requesting the
chosen resources.

Virolab Deliverable 2.3 – version 1.4 Page 40 of 83

Figure 36 Portal architecture

Portal Features in Version 1
The basis for the ViroLab portal is GridSphere. To provide full
functionalities required in the project this framework had to be expanded
by several extensions. The need for extensions results from the security
requirements as well as needs of GUI behavior. In the version 1, the
portal is equipped with the following features:

1. In order to start working with ViroLab portal, the user needs to be
authenticated. Authentication is done at the level of the user’s Home
Organization (HO). There was a need to make it possible to choose
the Home Organization to which the user belongs. Such a module is
named “Where Are You From” (WAYF). The new portlet designated
for that task was created. It is called “Shibboleth Login” and is an
acting WAYF function. When the user wants to log in to the portal,
he/she has to select his/her HO from the list and then he/she is
redirected to his/her HO authentication page [step 2 of the
scenario].

2. After having chosen the Home Organization, the portal should
redirect them to proper HO Authentication module, and when a
positive authentication recognizes the user, he/she is allowed to use
the portal applications. In order to perform that, GridSphere was
integrated with Shibboleth module ShibGS [step 3 of the scenario].

3. After the successful authentication the user is recognized by a
handle and IdP name (IdP is other name for Home Organization and
stands for Identity Provider). The portal is responsible to keep this
data and pass it to requested resources. There is a portlet which
shows this information (some resources need to be accessed without
using the portal; if they need to be secured, the data from this
portlet can be used in order to perform authorization)

4. ViroLab version of the Portal has been integrated with Google Web
Toolkit AJAX API. This toolkit provides a simplified dynamic web
application creation and decent look of the portlets.

5. In order to make the portal available from within mobile devices
such as PDA or cell phone, the portal has been extensively tested on
these platforms and required modifications have been made. These
implied several configuration changes in order to make the portal
adjust to other devices.

Virolab Deliverable 2.3 – version 1.4 Page 41 of 83

Portal Integration Points

WAYF and IdP integration
The WAYF (“Where Are You From”) module provides the possibility to
choose the Home Organization which the user belongs to. To establish
this, integration with several Home Organizations was made. At the
moment of creating this document the following organizations were
integrated: Cyfronet, HLRS, and GridwiseTech. This integration provides
users from within these institutions with their own authentication systems
in order to start working with Portal.

Integration of Portal with Provenance (QUaTRO)
Query Translation Tools – QUaTRO, also referred to as the ‘provenance
GUI’ is a tool designed for enabling end user-friendly construction of
queries over both data and provenance repositories. In fact, QUaTRO can
use any repository for which a semantic description of its data model is
provided as in the case of ViroLab’s data repositories available through
Data Access Service and the provenance repository available through
PROToS.

Figure 37 QUaTRO and context architecture

Figure 37 depicts the QUaTRO tool and all external components it interacts
with. These are:

o PROToS, which serves as a provenance repository in our Virtual
Laboratory. Communication between QUaTRO and PROToS is
realized by stateless web services. QUaTRO, using the remote
interface, sends queries to PROToS which are XQuery-based queries
encapsulated in a Query-class instance. Query results are
represented in XML and retrieved from a QueryResult-class instance.

Virolab Deliverable 2.3 – version 1.4 Page 42 of 83

o Data repositories – currently only relational data bases, whose data
models are described as ontological semantic mappings, are
supported. These mappings describe how the ontology data model is
mapped into particular relational database schemas. For the sake of
integration and testing we have set up an SQL database at
CYFRONET together with suitable semantic mappings. Below we
present part of the mapping ontology.

The QUaTRO architecture was designed and implemented for
quick integration with new data sources in mind. The logic
responsible for accessing data has been moved to a separate
component, named quatro-dac, built around a factory of data access
clients. Each client could implement a logic for accessing a separate
type of sources, but the differences are hidden other QUaTRO
components, so that adding a new client has no impact on
component’s code. Currently, the implemented SQL client is based
around a standard Java JDBC library.

<rdf:RDF
 xml:base="http://www.virolab.org/onto/mapping/cyfronet_mysql/">
 <owl:Ontology rdf:about="">
 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Mapping of ViroLab data model into Cyfronet's MySql data server
schema.

 </rdfs:comment>
 <owl:imports rdf:resource="http://www.virolab.org/onto/data/"/>
 </owl:Ontology>
<!--
 CLASSES MAPPINGS
-->
 <rdf:Description
rdf:about="http://www.virolab.org/onto/data/Patient">
 <vl-upper:mappedTo
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

test:patient
 </vl-upper:mappedTo>
 </rdf:Description>
<!--
 RELATIONS MAPPINGS
-->
 <rdf:Description

In the near future we plan to integrate QUaTRO with all data
sources available, especially with those accessible by Data Access
Service. This will be implemented by using Data Access Client,
running within a remote Grid Space Engine instance, connected by
a proprietary protocol.

o Semantic descriptions. Currently our ontologies are stored at a
CYFRONET’s server, and are available via the HTTP protocol.

Virolab Deliverable 2.3 – version 1.4 Page 43 of 83

Because QUaTRO does not need to query RDF and is capable of
processing semantic data itself, we did not assume to use a more
sophisticated ontology storage. QUaTRO accesses and downloads
required ontologies by using a standard Java HTTP client
functionality.

Integration of Portal with Data Access Service (DAS
Portlet)
To assist end-users, database administrators and mainly technicians
(application developers) to browse and query distributed databases, a nice
and user-friendly graphical user interface (DASPortlet) is being developed
and foreseen to be integrated within the ViroLab Portal.

The preliminary version of this application is currently installed at HLRS’s
portal instance, which has been set up for testing purposes only, and
interacts with the Data Access Services [Assel07] (DAS) to access the
dispersed biomedical databases. The DAS provide standard web service
interfaces allowing the smooth invocation of single services’ capabilities.
In order to connect with these interfaces remotely, so-called web service
proxies or “stubs” are available that hide all communication and
transformation activities from the users and developers respectively. The
basic interactions between the portlet and services are based on SOAP
over HTTP or additionally, to increase the level of security by transferring
encrypted messages [Kipp07] only, HTTPS could be simply switched on.

All available services’ functionalities are supported by the portlet. This
includes the listing of available and/or accessible resources, the viewing of
certain databases and their released schema definitions, and finally, the
submission of simple and complex queries, in particularly, to all accessible
resources simultaneously.

Furthermore, while using the remote data services, the already
authenticated user has to authorize himself with the DAS at first before he
can perform any actions on the aggregated data sources. Details on the
security principles and functionalities are described in Section 5.1.1.8.

In the following, some screenshots showing the current version of the DAS
Portlet, together with a short description, are presented in order to explain
and highlight the major features.

If a user has successfully logged in to the portal and selects the DAS
Portlet application, he/she directly obtains an overview of all available
resources (Figure 38).

Virolab Deliverable 2.3 – version 1.4 Page 44 of 83

Figure 38 Available resources in DAS portlet

All listed resources are connected via the DAS, and can be used for further
processing. If one of the resources has been selected by the user, he
might be interested in browsing the content of the corresponding
database. To view for example the available tables, he/she simply needs
to click on the ‘Show Tables’ button. But instead of providing him/her with
a set of tables, the DAS throw an exception saying that he/she is not
allowed to browse the resource’s content until he/she has been
successfully authorized by the DAS (pls. refer to Section 5.1.1.8, Figure
39).

Virolab Deliverable 2.3 – version 1.4 Page 45 of 83

Figure 39 DAS authorization required

In order to deal with the available resources, the user is forced to
authorize him/herself with the services. Therefore, he/she has to send
his/her identity token and his/her home organization shortcut (basically
the address of the corresponding IDP) to the DAS that take this
information for requesting relevant attributes used to initialize the
authorization process (Figure 40). Both, the identity token or user handle,
and the IDP address can be obtained from the incoming HTTP POST
request (forwarded by the corresponding IDP). This request contains all
relevant parameters in form of hidden HTML form fields.

Virolab Deliverable 2.3 – version 1.4 Page 46 of 83

Figure 40 Inserting security token

After the user has been successfully authorized by the DAS, a list of
available resources changes into a list of accessible resources is shown,
which can now be browsed and queried by the current user.

Figure 41 Accessible resources in DAS Portlet

Virolab Deliverable 2.3 – version 1.4 Page 47 of 83

To perform any actions on the individual resources, the user simply needs
to select one of the provided resources. Having selected the corresponding
resource, he/she can browse for example the content of specific databases
or immediately send a distributed query to multiple resources
concurrently. The results of this query are shown in the lower part of the
application (‘Table Contents’), where the user directly sees from which
resource the data has been collected (Figure 42).

Figure 42 Table of contents in DAS Portlet

All these basic functionalities are principally considered as stable but will
be further enhanced with regard to performance, reliability, and
scalability. New releases of the DAS and the DASPortlet will facilitate the
communication between the application and the underlying resources.

Therefore, a higher language based on common natural terms instead of
pure SQL statements shall be used to query data from corresponding
databases. Moreover, the possibility of passing queried data sets to other
available portlets shall also be considered in the future.

Integration of Portal with GSEngine and Experiment
Repository
Portal integration with GSEngine and Experiment Repository is realized by
an intermediary component – Experiment Management Interface (EMI).
EMI in the environment of the Gridsphere framework is a separate portlet
as depicted in Figure 43. It is composed of three views:

• Repository View – This view is a direct graphical user interface of the
underlying experiment repository. It presents a list of available

Virolab Deliverable 2.3 – version 1.4 Page 48 of 83

experiments with detailed information about each experiment, its
authors, release comments, etc. In particular it is possible to view
the scenario script, license agreement and submit feedback to the
experiment developers by issuing tickets or comments.

• Execution View – It is responsible for presenting the execution
status of running experiments. When a user input is required during
the execution of a particular experiment it is reported back to the
user by this view.

• Result Management View – When an experiment finishes it usually
produces scientific results which are listed and presented by this
view.

Figure 43 Experiment Management Interface incorporated in the Gridsphere
environment presenting part of the Repository View

Integration of the Experiment Management Interface (EMI) with the
external Grid Space Engine Server is implemented by including a client
package in the EMI release. On the application server side the included
library is configured with the engine’s endpoint and the connection is
established. It is presented in Figure 44 as a component diagram. The
type of communication between the EMI and the GSEngine during
experiment evaluation is asynchronous and is described in detail in section
3.2 of the [D3.4] deliverable.

Virolab Deliverable 2.3 – version 1.4 Page 49 of 83

Figure 44 EMI integration points with Grid Space Engine and Experiment
Repository

In order to fulfill the security requirements EMI also uses the Shibboleth
Handle Retrieval Interface to obtain a Shibboleth user handle in order to
delegate it to external nodes (such as GSEngine or Experiment
Repository). This integration is accomplished by extending the GridSphere
portal with a Shibboleth handle provider which exposes the mentioned
interface to retrieve the handle. The interface is implemented by using the
GridSphere container’s session facility which passes the user credentials
from the container to the EMI’s JavaScript environment.

As depicted in Figure 44 EMI uses an Experiment Repository Client to
communicate with the external Experiment Repository. The client library is
packaged together with the EMI release and ready to work after
configuring the endpoint of the repository and providing the user
credentials. This is done by delegating a user Shibboleth handle obtained
from the portal Shibboleth extension package. An important requirement
here to fulfill by the repository’s deployment is to be compatible with
Shibboleth authorization mechanism. The extension is critical for the EMI
to work properly with the repository.

Next major milestone in the EMI’s roadmap is to implement more result
management routines so the results may be shared and searched. Another
improvement will be the support for annotations and comments of
different pieces composing the EMI environment such as experiments,
results or repositories.

Planned Functionalities of Portal
There are a few tasks to be performed in the future concerning the Portal.
Among other things this task covers: secure elements at the level of portal

Virolab Deliverable 2.3 – version 1.4 Page 50 of 83

(access to portlet only for authorized users), a collaboration tool for
currently logged on users, simplification of the Portal and its usage.

4 Middleware
Middleware layer includes access to computing resources and to
monitoring infrastructure. Access to computing is provided by the adapters
for various underlying middleware technologies, which are plugged in to
Grid Operation Invoker of Runtime System (WP3). Currently we support
such technologies as Web Services, MOCCA components, EGEE jobs and
initial support for WSRF services. The high-level overview of the ViroLab
middleware layer is shown in Figure 45.

Figure 45 Overview of ViroLab middleware

The middleware was integrated with WP3 (GSEngine) and supports
ViroLab applications (WP4) such as Drug Ranking System (as a Web
Service) and RegaDB Tools (alignment, subtyping) using WTS services.

The infrastructure monitoring has been integrated with the Grid Resources
Registry (GRR) of WP3 and the integration with Provenance system is
under development.

Features in Version 1 of Middleware
Within the middleware task a client-side library (named Grid Operation
Invoker) has been developed. The GOI implements the Grid Object
abstraction [VLINV] over distributed computational resources and enables
to access them remotely within an experiment in a uniform manner. The
library is implemented in JRuby and relies on Java client-side libraries.
Additionally, the installation of the EDG User Interface is required in order
to enable usage of the EGEE infrastructure. The GOI architecture is
modular and every middleware technology is supported by a dedicated

Virolab Deliverable 2.3 – version 1.4 Page 51 of 83

adapter [D2.2]. The Grid Operation Invoker provides a simple and uniform
API for creating client-side representatives for Grid Objects [D3.3-A2].
Representatives interface remote computational resources in their specific
communication protocols, but are interfaced like ordinary Ruby objects. At
a runtime, based on the description retrieved from the Grid Resource
Registry, an appropriate adapter is loaded and a representative is created.

On the current stage of development the middleware client-side library
allows:

o Invoking Grid Operations in a uniform way on computational
resources using leading middleware suites. The GOI library contains:

o WsAdapter which is based on the Ruby built-in support for
Web Service.

o WsrfAdapter (prototype support) that relies on the Java WS
Core 4.0.6 provided by the Globus Toolkit.

o MoccaAdapter which uses MOCCA Java client-side libraries.

o Witty Services (WTS) that is based on the Java client for the
WTS middleware.

o LCG (EGEE infrastructure) which uses the EDG User Interface.

WTS and LCG are job-oriented technologies therefore a wrapper for
software published with these technologies is required in order to
expose them in an object-oriented manner [TBCA].

o Calling operations in an asynchronous mode (prototype support),
even though asynchronous operations are not supported on the
server-side. A future variable is returned each time an asynchronous
operation is invoked and a new thread is started on the client-side.
Experiment interpretation is not suspended unless a result of an
asynchronous operation is required but is not ready.

o Reporting invocations of Grid Operations. Each time an operation is
invoked GridOperationInvoking and GridOperationInvoked events
are reported to the monitoring system.

o Calling “Shibboleth enabled” web services. At runtime, GridSpace
Engine assigns a Shibboleth handle to a global constant. If a service
is described as being secured with the Shibboleth the GOI library
transparently includes a Shibboleth handle in requests to a secured
service. For information how a GridSpace Engine retrieves a handle
please refer to Section 5.1.1.8.

Grid Service Availability Monitor (GSAM) has been developed to provide
monitoring of the services which are able to be invoked by GOI. GSAM
task is to provide information about availability of services as well as
performance information concerning nodes where services are deployed.
For performance information like usage of memory or CPU additional
sensor installation on a node which should be monitored will be required.

Virolab Deliverable 2.3 – version 1.4 Page 52 of 83

GSAM uses Java Message Service (JMS) for communication and temporary
as an interface. It will be changed for uniform monitoring interface
common for provenance and GSAM.

At the present stage of development following functionality is provided:

o Monitoring state of the services whether they are ACTIVE or DEAD
(or NOT_CHECKED at start). It is performed by periodic request
sending on a registered endpoint address and waiting for a
configurable time for response. If any response is given then
monitored service gets ACTIVE status and DEAD otherwise.

o GSAM is constantly listening on a JMS topic for messages with list of
services to be added to monitoring either to remove from monitoring
list.

o GSAM sends status of services to Grid Resource Registry (GRR)
periodically with configurable time gap.

Middleware Integration Points

Integration of Middleware with GSEngine
GridSpace Engine is responsible for interpretation of experiments utilizing
the middleware library therefore every distribution of GSEngine contains
the Grid Operation Invoker library as well as all libraries it requires. Both
the GOI library and GSEngine are described with Maven Project Object
Model [POM] files in order to ensure that all library dependencies are met
and to facilitate releasing of the software.

The Grid Operation Invoker library is fully integrated with the GSEngine
and its functionality is accessible within an experiment using Ruby
language.

Integration of Monitoring with Provenance

Provenance information is an ontology-based record of an experiment’s
execution. The process of recording provenance is based on monitoring
events related to the execution of the experiment, collecting them in
a Semantic Aggregator which translates the low-level monitoring events
into high-level ontology representation and publishes the ontology records
in Provenance Tracking System (PROToS) [Balis07].

Virolab Deliverable 2.3 – version 1.4 Page 53 of 83

SemanticEvent
AggregatorGRR

GSEngine

resource events

experiment events

PROToSPROToS events

experiment
script

domain events

Experiment
ontology

Ontology
extension

DRS
ontology

Event
Generation

Tool

domain event helpers domain concepts

Figure 46 Monitoring data collection process

This process is depicted in Figure 46. The Semantic Event Aggregator is
described in [D3.4].

All monitoring events are published through monitoring facade, which is,
at the current stage of development, implemented utilizing log4j remote
appenders. The following type of XML events are passed to Aggregator:

• ExperimentStarted
• ExperimentFinished
• GridOperationInvoking
• GridOperationInvoked
• GridObjectRegistered
• GridObjectInstanceRegistered

The above events are created in GSEngine and GRR components. In order
to enable the correlation, events corresponding to experiment course are
augmented with an experiment identifier, while events corresponding to
Grid Objects calls are additionally augmented with a unique identifier
generated by GSEngine. The Castor framework provides mapping between
events XML schema and Java classes that are used in events creation. In
the future, we plan to support JAXB API.

In addition to the generic events, the following domain events are
generated for the Drug Ranking System experiment:

• NewDrugRanking
• DRSAlignment
• DRSSubtyping

Virolab Deliverable 2.3 – version 1.4 Page 54 of 83

The domain events are created in the experiment script utilizing helpers
that are automatically generated from DRS ontology by
EventGenerationTool.

Integration of Monitoring with Registry
GRR registry uses the monitoring system to monitor the availability of
services. The availability monitor to which GRR is connected is called
GSAM (Grid Service Availability Monitor). GRR and GSAM are connected by
two channels implemented in Java Message Service (JMS) (Figure 47):

o The first channel is used by GRR to request availability monitoring of
a service, passing its endpoint; or to request to stop the current
monitoring of a service.

o The second channel is used by the monitoring system to send
monitoring events to GRR which contain the status of the monitored
service.

The events with information about the availability of service are created
periodically with a preconfigured rate. The status of the service passed in
these events can be: ALIVE, DEAD or NOT_CHECKED.

Figure 47: Communication between Grid Resources Registry and monitoring
system.

The scenario of service availability monitoring is presented in Fig. 48. It
consists of the following steps:

o A new service is assumed to be manually registered in GRR by
a Registrator.

o GRR in turn registers the new service (or a list thereof) in GSAM.
GSAM initially sets the status of the new services as NOT_CHECKED.

o GSAM periodically monitors the availability of all registered services
by sending requests to their endpoint addresses.

o If GSAM receives a response from the requested service within
a preconfigured time, it sets the service’s status to ACTIVE. The
DEAD status is set otherwise.

o GSAM periodically sends update to GRR with status of all services
registered for monitoring.

o GRR can also send a request to stop the monitoring of a given
service.

Virolab Deliverable 2.3 – version 1.4 Page 55 of 83

Figure 48: Scenario of GSAM services monitoring and interaction with GRR.

GSAM is configured in an XML file which contains the following
parameters:

• URL of the JMS communication broker,

• JMS topic name for adding or removing services to be monitored,

• JMS topic name to publish the service status updates,

• The notification interval,

• The connection timeout for checking the availability of a service,

• The check interval to refresh the list of services.

An example configuration file of GSAM is shown below:

<gsam>

<!-- sets address to the jms provider endpoint -->

<param name=”activeMqUrl” value=”tcp://virolab.cyfronet.pl:61616”/>

<!-- topic name for adding/removing services-->

<param name=”newServiceTopicName” value=”newServices”/>

<!—topic name for service state notification -->

<param name=”notificationTopicName” value=”serviceStateNotification”/>

<!--interval in ms how often should state of services be send-->

<param name=”notificationInterval” value=”5000”/>

<!-- timeout in ms when service is treated as DEAD -->

<param name=”connectionTimeout” value=”3000”/>

<!--time in ms between next checking of services list-->

<param name=”checkInterval” value=”3000”/>

</gsam>

Virolab Deliverable 2.3 – version 1.4 Page 56 of 83

Currently, the GSAM interface is based on JMS which uses serialized Java
classes to represent events (described below). In the near future this will
be replaced with a language-neutral XML-based representation.

In addition to the service availability status, GSAM passes information
concerning capabilities of the resource (node) on which the service is
hosted. This information contains node’s RAM and CPU, and is later
consumed by GridSpace Application Optimizer (GrAppO).

Integration of Middleware with DRS
Drug Ranking System application is exposed as a Web Service and can be
accessed within the ViroLab virtual laboratory. The functionality provided
by the DRS is accessed in experiments, such as drs_experiment and
geno2drs2drs_experiment [EXP]. These experiments use the Grid
Operation Invoker middleware library and can be executed either in the
EPE, EMI or using GSEngine command-line tools.

Integration of Middleware with RegaTools
Rega Tools are published using the Witty Services (WTS) middleware
which is supported by the middleware library. Alignment and HIV subtype
tools are accessible within the ViroLab virtual laboratory and are used in
the align_wts, hiv_subtype and geno2drs_experiment experiments [EXP].

Planned Functionalities of Middleware
The Grid Operation Invoker middleware library is already operational and
used in many experiments. Nevertheless, the work on GOI will be carried
on. Our efforts will be targeted at:

o enhancing adapters for WSRF and LCG technologies,

o enhancing support for asynchronous operation invocation,

o providing more information about experiment execution and results
to provenance system,

o implement introspection mechanism to take advantages of the Ruby
scripting language,

o developing an adapter for the AHE middleware,

o implementation of a mechanism for registering created MOCCA
components in the Grid Resource Registry.

The future work on monitoring and provenance integration will be focused
on supporting XML-based formats of propagated events as well as on
improving the stability and performance of the prototypes.

Virolab Deliverable 2.3 – version 1.4 Page 57 of 83

5 Security
In order to develop a reliable security framework that meets the project
requirements the following assumptions were made:

o a Virtual Organization is formed from the combination of resources
and users

o all participants in a Virtual Organization trust each other;

o no central database of users - system should utilize the existing
users' databases of hospitals, universities, scientific institutes;

o policy is the set of attributes which is needed to access a specific
resource;

o each service/data provider creates their own policy to ensure that
only people with proper attributes can access it;

o users are only allowed to use a resource when their attributes
match the policy.

During the first phase of the project it was decided that ViroLab security
framework will be based on Shibboleth [Shibboleth]. Key concepts within
Shibboleth include:

o Federated Administration (trust fabric exists between Home
Organizations, which allows each site to identify the users, and
assign trust level; HOs are responsible for user authentication, while
Resource Providers are responsible for authorization)

o Authorization is attributes based – each resource ask user's Home
Organization about attributes, and make an authorization decision

o Standards Based – this solution uses OpenSAML for the message
and assertion formats, security data exchange protocol is based on
Security Assertion Markup Language (SAML).

To provide Virtual Organization capabilities a new and innovative approach
was taken. It uses proved solutions like Shibboleth and SAML, but in a
new and modified way that aims to fulfill the specific ViroLab
requirements. A dynamic Virtual Organization is established by using
attributes to identify user privileges, which the resource providers can use
for authorization purposes. The framework will be developed to secure all
resources accessible in the Virtual Laboratory (e.g. Web Services, SVN).

Features in Version 1 of Security Framework
In the current version, the security framework provides several modules
and tools that allow to create reliable and dynamic Virtual Organizations.
As it was described in [D2.2], the members of Virtual Organization depend
on the attributes which they have and the policies of resources. Based on
that, the following features are accessible in version 1:

Virolab Deliverable 2.3 – version 1.4 Page 58 of 83

o Possibility to authenticate at one portal instance for users from
different Home Organizations (HO). Several organization have already
been integrated (GridwiseTech, Cyfronet, HLRS). A separate “Orphan
IdP” has also been created and managed by GridwiseTech, as
placeholder for participants from member institutions whose IdP has
not been installed yet.

o In order to authorize the user, each resource has to get the attributes
from users’ HOs and compare them with local policies to grant or deny
access.
The module which is responsible for this task was created. It is named
ShibAuthAPI and it is Java-based module which performs the attributes
request and authorization.

o There is a different possibility to perform the authorization to using the
ShibAuthAPI. For each of the resources (or even a group of them) the
authorization point can be created. In order to grant or deny access for
a particular user, the resource invokes the authorization point with
proper arguments. This solution is named ShibRPC and it does not
influence the resource as much as ShibAuthAPI, and is not limited to
Java language either.

o One of the module which had to be secured is ExpRepo. This is the
experiment repository based on SVN. In order to make this resource
secured, the Authorization point based on ShibRPC was created.

o As the example and model solution of securing the services the Axis
WebService were chosen. The process of granting or denying access to
this resources is based on ShibAuthAPI

Virolab Deliverable 2.3 – version 1.4 Page 59 of 83

Figure 49: Security integration points

All these elements are presented in Figure 49 and described in the
following sections.

Attribute request library (ShibAuthAPI)
The aim of Shibboleth Attribute Authority API, or ShibAuthAPI for short, is
to provide a general interface that can be used by other developers to
shibbolize their modules. The users of these modules will be authorized via
Shibboleth. ShibSVN and ShibAxis are example shibbolized modules.

ShibAuthAPI contains two elements:
1. AttributeRequestor
2. PolicyResolver

5.1.1.1AttributeRequestor
AttributeRequestor
(com.gridwisetech.shibboleth.auth.AttributeRequestor class)
performs the attribute request for a given user. Firstly, the user is
required to log on to ViroLab portal using his/her login name and
password in order to receive Shibboleth handle and Shibboleth Identity

Virolab Deliverable 2.3 – version 1.4 Page 60 of 83

Provider (IdP) URL. These values are later used for querying Shibboleth
IdP about the user attributes. If the correct attributes are returned by
Shibboleth, PolicyResolver is asked for making an authorization decision.

AttributeRequestor requires the following input arguments:
− Shibboleth handle (e.g. _133e6bb9458bc857cb1cf031d93e553a)
− Shibboleth IdP URL (e.g. https://virolab.gridwisetech.pl/shibboleth-idp)

AttributeRequestor parses ShibAuthAPI configuration file (here: conf.xml)
to find the following information:
1. certificate directory (<certDir>)
2. all available Shibboleth IdP certificates, specified as filename and IdP

URL pairs (<certificate>)
3. Shibboleth SP certificates (assigned to given IdP certificates) as URLs

(<sp>)
4. Shibboleth IdP/AA certificates, specified as filename and AA URL pairs

(<aa>)
5. service provider certificate (<spCert>)
6. service provider private key (<spKey>)
7. Java Key Store server-side file (<serverJKSFile>)
8. Java Key Store client-side file (<clientJKSFile>)
9. default Java Key Store alias (<defaultJKSAlias>)
10.default Java Key Store password (<defaultJKSPassword>)
11.access policy file name (<policy>)

Example configuration file looks as follows:

 <?xml version="1.0" encoding="ISO-8859-2"?>
 <config type="sp">
 <certDir>etc/</certDir>
 <idp_certificates>
 <certificate>
 <filename>idp_gwt.crt</filename>
 <url>https://virolab.gridwisetech.pl/shibboleth-idp</url>
 <sp>https://virolab.gridwisetech.pl/shibboleth-sp</sp>
 <aa>
 <filename>idp_gwt.crt</filename>
 <url>https://virolab.gridwisetech.pl:8443/shibboleth-idp/AA</url>
 </aa>
 </certificate>
 <certificate>
 <filename>idp_cyfr.crt</filename>
 <url>https://virolab2.cyfronet.pl/shibboleth/idp</url>
 <sp>https://virolab2.cyfronet.pl/shibboleth-sp</sp>
 <aa>
 <filename>idp_aa_cyfr.crt</filename>
 <url>https://virolab2.cyfronet.pl:8443/shibboleth-idp/AA</url>
 </aa>
 </certificate>
 <certificate>
 <filename>hlrs.crt</filename>
 <url>https://gridmania.hlrs.de/shibboleth/testshib/idp</url>
 <sp>https://csharp.hlrs.de/shibboleth/testshib/sp</sp>
 <aa>
 <filename>>hlrs.crt</filename>
 <url>https://gridmania.hlrs.de:8443/shibboleth-idp/AA</url>
 </aa>
 </certificate>
 </idp_certificates>
 <spCert>sp.crt</spCert>
 <spKey>sp.key</spKey>
 <serverJKSFile>shib_server.jks</serverJKSFile>

Virolab Deliverable 2.3 – version 1.4 Page 61 of 83

https://virolab.gridwisetech.pl/shibboleth-idp

 <clientJKSFile>shib_client.jks</clientJKSFile>
 <defaultJKSAlias>globus</defaultJKSAlias>
 <defaultJKSPassword>globus</defaultJKSPassword>
 <policy>policy.xml</policy>
 </config>

5.1.1.2PolicyResolver
PolicyResolver (com.gridwisetech.shibboleth.PolicyResolver class)
checks location of its configuration file (here: policy.xml) in ShibAuthAPI
configuration file (here: conf.xml). Then it loads access policies from its
configuration file. In the end, it authorizes users, or denies them
authorization, basing on loaded policies

Example access policy configuration file looks as follows:
<?xml version=”1.0” encoding=”ISO-8859-2”?>
<policies>
 <policy>
 <publication_date>2008-01-01</publication_date>
 <attribute>
 <name>mail</name>

 <authorized>jb@mail.com</authorized>
</attribute>

</policy>
<policy>
<publication_date>2008-02-01</publication_date>
<attribute>

<name>Organization</name>
<authorized>GridwiseTech</authorized>
</attribute>
<attribute>

<name>Role</name>
<authorized>Doctor</authorized>
<authorized>Developer</authorized>

</attribute>
<attribute>

<name>Name</name>
<authorized>John Brown</authorized>

</attribute>
<attribute>

<name>Mail</name>
<authorized>jb@mail.com</authorized>
</attribute>
</policy>

</policies>

Each policy has its publication date (publication_date) and a list of tags
set.

Policy attribute tags have the following meanings:

− name: the attribute name of the attribute

Virolab Deliverable 2.3 – version 1.4 Page 62 of 83

− authorized: the authorized value(s) for the attribute

The list will be extended depending on Virtual Organization requirements.
Example future enhancements are the following:

 HomeOrganization
 TypeOfOrganization
 Department
 Role

ShibAuthAPI at work

Authentication and authorization process using ShibAuthAPI looks as
follows:

1. User sends authorization request using Shibboleth IdP URL and
Shibboleth handle previously obtained from ViroLab Portal
AttributeRequestor (AR) object is created using obtained Shibboleth
values

2. AR reads certificates configuration, Shibboleth SP URL and IdP/AA

Virolab Deliverable 2.3 – version 1.4 Page 63 of 83

URL from ShibAuthAPI configuration file
3. AR creates new Java Key Store file for keeping certificates and keys
4. AR queries IdP about user attributes

AR extracts attributes from SAML response that was received from
IdP

5. PolicyResolver (PR) object is created using previously obtained user
attributes

6. PR loads ShibAuthAPI configuration file (conf.xml) to find location
of policy configuration file (policy.xml)

7. PR loads all policies from policy configuration files
8. PR matches user attributes with loaded policies. If any policy

matches, then user is authorized

5.1.1.3Usage example

Client-side code to authorize the users should be similar to the code
presented below:

AttributeRequestor client = new
AttributeRequestor("_133e6bb9458bc857cb1cf031d93e553a",
"https://virolab.gridwisetech.pl/shibboleth-idp");

HashMap<String, String> attributes = client.queryAttributes();
boolean authorized = new PolicyResolver().isAuthorized(attributes);
client.cleanup();
return authorized;

Arguments of AttributeRequestor class constructor need to be replaced
with appropriate Shibboleth handle and IdP URL.

ShibRPC
ShibRPC is an XML-RPC service which provides a bridge between
Shibboleth and client applications. Using ShibRPC it is possible to make
application Shibboleth-enabled (shibbolized) without doing tight
integration with any of Shibboleth libraries. To access ShibRPC service one
needs to use an XML-RPC client which meets XML-RPC standard
specification. As this protocol is very popular, there are many ready-to-
use libraries which are available for C/C++, Java, Ruby, Python, PHP and
other programming languages which support TCP/IP sockets.

The advantage of ShibRPC is that it is based on ShibAuthAPI and exposes
main functions which this API provides in an easy way for application
developers. With ShibRPC the application can easily access user attributes
such as: username, email, organization, etc. by passing Shibboleth handle
and IdP URL to the XML-RPC method. Basing on these attributes, the
application can decide whether a user can access service or not. As
ShibRPC is based on ShibAuthAPI, handle authorization can also be done
using policy.xml file on ShibRPC side. In this policy file Service Provider

Virolab Deliverable 2.3 – version 1.4 Page 64 of 83

can easily define which user attributes are necessary to access the
invoked service.

Currently ShibRPC exposes two methods:

 int ShibAttr.authorizeHandle(String handle, String idpUrl)
 Map<String, String> ShibAttr.getAttributes(String handle, String idp)

The included flow diagram presents the process of handle authentication.
When a service needs to validate a user to Shibboleth basing on the
handle, this service calls remote ShibRPC XML-RPC service by passing the
handle and IdP URL as parameters (1). After having invoked XML-RPC
method, ShibRPC connects to selected IdP and sends handle with a
request for attributes (2). In response IdP sends attributes or information
that the handle is no longer valid. After having received a response from
IdP (3), ShibRPC checks attributes against policy file to decide whether
the user can access the resource or not (4). Then response is sent back to
the service which invoked XML-RPC method (5).

ShibSVN
The aim of ShibSVN module is to make access SVN resources from
unmodified SVN client with Shibboleth authorization possible. The solution
makes use of Java Shibboleth API (ShibAuthAPI), which decides about
user authorization basing on Shibboleth handle.

Virolab Deliverable 2.3 – version 1.4 Page 65 of 83

Figure 50 ShibRPC flow diagram

ShibSVN consists of two elements:

1. Authorization module Apache HTTPd together with XML-RPC client

2. Java XML-RPC web service, placed on the separate WWW server which
uses ShibAuthAPI in order to authorize the users

Authorization to access SVN repositories is based on “Basic
Authentication”, standard method included in HTTP 1.0 standard. This
method makes logging to SVN repositories from WWW browser or other
clients possible. In a standard way Apache HTTPd uses logins and
passwords written in text files, LDAP or database.

Apache module authn_shibattr provides authorization to any WWW
resource inside Apache server, using XML-RPC methods on a remote
server. A user providing his/her handle and IdP address as a password is
an important codition here. Handle and IdP should be separated by “#”
character.

The authorization process is showed at the diagram:

1. User wants to checkout files from repositories
https://protectedrepo/svn

2. User logs on to the portal using Shibboleth authentication and
obtains the Handle and IdP URL.

3. User wants to connect to SVN and update/commit files

4. User should fill in a user field with e-mail and password with
handle#

5. SVN client connects to Apache server sending the login and
password

6. Apache passes login and password to module authn_shibattr

7. Module authn_shibattr invokes the XML-RPC method
(authorizeHandle) on the remote Tomcat server with installed
ShibRPC and sends handle and IdP URL as parameters.

8. Application ShibRPC obtains the attributes from the chosen IdP
basing on the handle and decides if user could access the resources
basing on policy file.

9. XML-RPC method sends back the result.

10.If authorization fails the SVN client should ask for password again.
Otherwise, user will be granted access to the resources.

Virolab Deliverable 2.3 – version 1.4 Page 66 of 83

https://protectedrepo/svn

Shibbolized Axis
The aim of ShibAxis is to show a general approach to integration of
Shibboleth with Apache Axis2 (Java). It is an Apache Axis module and
service that requires the clients to authorize via Shibboleth. It also
contains a simple client that connects to the aforementioned web service.
In other words, it is an example of shibbolized web service using
ShibAuthAPI.
ShibAxis contains three elements:

1. Apache Axis2 module
2. sample Apache Axis2 service
3. sample Apache Axis2 client

5.1.1.4Apache Axis2 module
Apache Axis processing of web service clients requests is organized into
phases. We defined a new phase - authorization phase. The phase is
configured in module.xml file (module deployment configuration file) and
$AXIS_HOME/conf/axis2.xml (global Apache Axis configuration file). Each
phase contains one or more Axis handlers. A client requests traverses
through all handlers in sequence and needs to be accepted by all of them.
Any of the handlers in question may either accept, suspend or abort

Virolab Deliverable 2.3 – version 1.4 Page 67 of 83

Figure 51: Authorization to Shibboleth-enabled SVN repository diagram

further request processing. We created one handler inside authorization
phase - authorization handler
(com.gridwisetech.shibboleth.auth.AuthorizationHandler class). As
soon as Axis processing flow reaches the handler, its method ''invoke'' is
run and returns acceptance decision. In this case we decided that if a
given client request is denied at authorization, an exception is thrown.

The handler is wrapped as an Axis module - shib-authorization. The
module is distributed as a JAR package (shib-authorization.mar). It
contains the following files:

 module class
(com.gridwisetech.shibboleth.auth.AuthorizationModule)

 authorization handler class
(com.gridwisetech.shibboleth.auth.AuthorizationHandler)

 module deployment configuration file (''module.xml'')

Module class allows additional configuration of how the module works. In
this case we kept to the standard module behavior.

5.1.1.5Apache Axis2 service
Apache Axis web services, or shortly Apache Axis services, provide a
means for running applications by Apache Axis. These services follow web
services approach. The service is defined as a single class (here:
userguide.example2.MyService). It is a modified example service from
Apache Axis2 distribution. It acts the similar way as standard TCP echo
service (echoes the message it has received as input). The service is
configured via services.xml file. This file assigns the service to a given
module (here: shib-authorization).

5.1.1.6Apache Axis2 client
In order to be used the service needs a client. We use a simple client
(userguide.clients.SayHelloClient). It is a modified example from
Apache Axis2 distribution. It sends a SOAP message comprising security
data and message for the service.
The above mentioned service and client are described in more detail in
Usage example section.

5.1.1.7ShibAxis at work

Flow of events while ShibAxis is enabled looks as follows:
o User runs the client (here: SayHelloClient) with three input

parameters (Shibboleth handle, Shibboleth IdP URL and message)
o Client sends SOAP message to the service (here: MyService)
o Apache Axis2 processes subsequent phases and handlers within

phases
o Authorization phase processing starts
o Authorization handler processing starts (invoke method)

Virolab Deliverable 2.3 – version 1.4 Page 68 of 83

o ShibAuthAPI is used to ask Shibboleth for making an authorization
decision

o ShibAuthAPI returns true (authorized) or false (unauthorized)
o If authorization was denied, an exception is thrown
o Security data (Shibboleth handle and IdP URL) are stripped from

SOAP message
o Requested method (here: sayHello) on web service is executed
o Method's result (here: echoed input the web service has received) is

sent to the user

5.1.1.8Usage example
Sample web service (userguide.example2.MyService) uses ShibAxis.
Sample client (userguide.example2.clients.SayHelloClient) connects
to the service that is protected by ShibAxis (here: MyService).

On the client side two additional parameters (SOAP tags) are required:
o handle (Shibboleth handle)
o idp (Shibboleth IdP URL)

Client-side code looks as follows:

 public class SayHelloClient {

 private static EndpointReference targetEPR = new
EndpointReference("http://localhost:8080/axis2/services/MyService?wsdl");

 public static OMElement getSayHelloElement(String msg) {
 OMFactory factory = OMAbstractFactory.getOMFactory();
 OMNamespace namespace = factory.createOMNamespace("http://example2.userguide",
"example2");

 OMElement sayHelloNode = factory.createOMElement("sayHello", namespace);

 OMElement handle = factory.createOMElement("handle", namespace);
 handle.setText("_3a4854248e6cf243ac833b09755286e7");
 sayHelloNode.addChild(handle);

 OMElement idp = factory.createOMElement("idp", namespace);
 idp.setText("https://virolab.gridwisetech.pl/shibboleth-idp");
 sayHelloNode.addChild(idp);

 OMElement message = factory.createOMElement("message", namespace);
 message.setText(msg);
 sayHelloNode.addChild(message);

 return sayHelloNode;
 }

 public static void main(String[] args) {
 try {
 OMElement payload = SayHelloClient.getSayHelloElement("Hello, there");

 ServiceClient serviceClient = new ServiceClient();

 Options options = new Options();
 options.setTo(targetEPR);
 options.setAction("urn:hello");
 serviceClient.setOptions(options);

 serviceClient.sendReceive(payload);
 } catch (AxisFault axisFault) {
 axisFault.printStackTrace();
 }

Virolab Deliverable 2.3 – version 1.4 Page 69 of 83

 }

The above mentioned code sends the following SOAP message to the
relevant web service
(''http://localhost:8080/axis2/services/MyService?wsdl''):

 <?xml version='1.0' encoding='utf-8'?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <soapenv:Header>
 <wsa:To>http://localhost:8080/axis2/services/MyService?wsdl</wsa:To>
 <wsa:MessageID>urn:uuid:2D7E21A188C3F655CA1204037206987</wsa:MessageID>
 <wsa:Action>urn:hello</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <example2:sayHello xmlns:example2="http://example2.userguide">
 <example2:handle>_eeacb3d5693477491b6c2523c1380f8b</example2:handle>
 <example2:idp>https://virolab.gridwisetech.pl/shibboleth-idp</example2:idp>
 <example2:message>Hello, there</example2:message>
 </example2:sayHello>
 </soapenv:Body>
 </soapenv:Envelope>

ShibAxis, Apache Axis2 Shibboleth authorization module to be precise,
uses handle and idp tag content to make an authorization decision (i.e.
grant or deny access to a given user). These tags are stripped after use.
In other words, web service does not receive any authorization data inside
SOAP message.

Service-side code looks as follows:

 public class MyService {
 private static final Log log = LogFactory.getLog(MyService.class);

 public OMElement sayHello(OMElement element) throws XMLStreamException

 {
 if (element.getLocalName().equals("message")){
 log.info("MyService message is: '" + element.getText() + "'");
 }
 return element;
 }
 }

Web service echoes the message it has received.

Shibidpclient
Shibboleth has been created to protect Web sites, but this functionality
does not fulfill all requirements of ViroLab. In some situations we need to
authenticate user without accessing any web page directly by the human
(e.g. EPE handle requesting plugin), or even without involving any human
interaction at all.

For such use, we have created Shibidpclient library, which is able to
get Shibboleth handle from SSO part of IdP. It is achieved by accessing
SSO part of given IdP pretending to be SP, authenticating using given
credential, and then parsing returned HTML to extract SAML response
assertion. After getting it library is using OpenSAML to validate its
integrity and to extract the handle itself.

Virolab Deliverable 2.3 – version 1.4 Page 70 of 83

http://localhost:8080/axis2/services/MyService?wsdl

Shibboleth 1.3 specification does not regulate any authentication
mechanism for SSO protection – it is clearly stated that it is left entirely in
hands of person in charge of deployment of Shibboleth infrastructure. In
ViroLab it has been decided that we are going to use Basic HTTP
authentication, and this type of authentication is currently supported by
the library.

Connection to HTTP server is being handled with the use of SSL
protocol, so transmission is secured.
Library does not perform authorization which might be performed e.g. by
ShibAuthAPI .

User of this library must create instance of
DefaultShibIdProviderClient class and run its method called
acquireHandle(), passing as the argument instance of the class being
implementation of the following interface:

public interface HandleRequesterConfig {
public String getLogin();
public char[] getPassword();
public IdProviderEntry getIdProviderEntry();
public String getTrustStoreFilename();
public char[] getTrustStorePassword();

}

Methods getLogin() and getPassword() of the implementation
should return credentials for user currently being authenticated,
getIdProviderEntry() should return the instance of IdProviderEntry
class (used to configure IdP appropriate for supplied credentials).

Constructor of this class requires that user supply following
parameters:

o ssoUrl – URL for SSO part of IdP at user’s HO
o shireUrl – URL of SHIRE at SP we’re acting as, it does not have to

be real SP but it must be configured as valid SP in IdP’s methadata,
o serviceProviderUri – name/URI of SP we are acting as, like befor

it does not have to be real
o identityProviderUri – at present it is not used and should be set

to empty string, it might be needed in the future
Methods getTrustStoreFilename() and getTrustStorePassword()

are used to specify location and credentials for standard Java certstore
with trusted certificates used as SSL certificates by all HTTP servers
hosting IdPs .

The acquireHandle()method returns String reference which points
to Shibboleth handle if authentication succeeded or is null if it fails.

Security Integration Points
The modules available in security framework which was described before,
are leveraged in the several components of Virtual Organization.

Virolab Deliverable 2.3 – version 1.4 Page 71 of 83

GSEngine which is the part responsible for running the ViroLab
experiments uses modules for securing Web Services and ShibSVN.
ExpRepo repository of experiments is secured using ShibSVN

Integration of Security with GSEngine
Since GSEngine constitutes an entry point to virtual laboratory it is

the first unit that requires authentication and authorization in application
execution scenario presented in Figure 52.

Figure 52 Integration between GSEngine and Shibboleth security infrastructure

GSEngine expects that evaluation requests contain a handle, so first
the clients of GSEngine, namely GSEngine Command Line Tool,
Experiement Planning Environment or Execution Management Interface
have to acquire one with Sibboleth IDP Client. Sibboleth IDP Client, in
turn, in order to acquire a handle needs IDP address and user’s private
key. Therefore, just after receiving application evaluation request
(denoted as step 1 in Figure 52) Command Line Tool, EPE or EMI ask user
for login and private key password (step 2). Then, Shibboleth IDP Client
can be used to acquire a handle from IDP of Home Organization chosen by
user (step 3). Shibboleth IDP Client connects with Shibboleth IDP using
decrypted user’s private key (step 4) and once the user gets authenticated
it returns a valid handle.

Given with handle GSEngine is called to execute application (step 5).
However, before execution starts the authorization has to take place. In
order to do so GSEngine asks Shibboleth Authorization Point for attributes
associated with a handle provided (step 6). Then, basing on acquired
attributes the access is permitted or denied.

Virolab Deliverable 2.3 – version 1.4 Page 72 of 83

Once the access is permitted a handle is being kept in application
context. In order to download application code from Application Repository
the Application Repository Client is called with the handle (step 7) so it
can access Shibboleth-enabled Application Repository. Afterwards, during
application when Data Access Client or any other runtime library of
GSEngine can access the handle kept in application context and use it in
order to access Shibboleth-enabled services such as Data Access Service
(step 8).

Integration of Security with ExpRepo (ShibSVN)
Experiment Repository is a normal Subversion repository which can be
accessed by standard Tigris Subversion client or other 3rd party tools such
as a web browser. In this repository the experiments are stored as files
and access to these files is restricted by Apache authentication - ShibSVN.

When a user logs on to the portal, he/she receives a handle from his/her
Home Organization Identity Provider (IdP). If user wants to access
Experiment Repository from the portal to get new experiments, the portal
sends Handle and IdP URL to the Subversion Experiment Repository
provider and this provider checks if this user can access this repository.
This process is done internally by Apache server, which hosts Subversion
repository. Apache contacts ShibRPC XML-RPC service and sends user
handle and IdP URL. This service connects to user IdP and retrieves user
attributes and checks them against access policy file.

In that file administrator can define who can access this repository and
who cannot. If user attributes match required by policy file attributes, user
is allowed to access that repository.

Authorization to the repository can be also done without the GridSphere
portal. To access Experiment Repository from the third party client e.g.
using Tigris SVN user has to type:

svn co https://location.of.experiment/repository/svn/trunk

In password field user has to pass handle and the URL of his IdP
separated by '#' character.
Example:

_7af9bdcad7cf26b0cb6e155eebd4a8ed#https://virolab.gridwisetech.pl/sh
ibboleth-idp

This handle and IdP can be easily obtained from GridSphere Shibboleth
information portlet.

Integration of Security with DAS
In order to guarantee that only persons who are known to the ViroLab
virtual environment can access certain data sets, additional security
mechanisms, in particular access control mechanisms for all integrated
data resources [Assel06], need to be defined and applied to protect the
sensible information from any abuse.

Virolab Deliverable 2.3 – version 1.4 Page 73 of 83

https://virolab.gridwisetech.pl/shibboleth-idp
https://virolab.gridwisetech.pl/shibboleth-idp
https://location.of.experiment/repository/svn/trunk

Therefore, the Data Access Services (DAS) have been connected and
adapted with the overall ViroLab security infrastructure. The services
provide capabilities to perform authorization decisions based on current
user attributes obtained from corresponding home organizations (IDPs).
These attributes are requested for each unknown DAS user. An unknown
user is identified by the DAS for example if a recent identity token has
expired or the user has invoked the service for the first time and with it
created a new service resource. This unique service instance is created by
a so-called service instance factory, a typical design pattern when dealing
with stateful web services (GT4 services). This factory creates and
instantiates a new service resource by defining a one-to-one relationship
through a specific endpoint reference (EPR) assigned with a unique key.
Using this EPR returned by the factory, the client can now invoke the
service’s operations through the proper service.

Figure 53 The WS-Resource factory pattern

After this distinct instance has been linked with exact one user, the DAS
itself need to be initialized. This means before one can access the
integrated resources, the services will perform a user authorization to
distinguish between available and accessible resources - Available ones
can only be displayed while accessible ones can be queried and/or
browsed (compare with figures in section 3). The distinction between
these two types (states) of resources specifies the user’s rights in terms of
having the permission to query data from a particular data source or that
the access to the resource is denied. The final decision whether one is
allowed or not, is based on the current user attributes that have been
released from the user’s home organization. These attributes are

Virolab Deliverable 2.3 – version 1.4 Page 74 of 83

requested via a so-called attribute request by sending the user’s handle
(identity token) to the corresponding IDP which initially checks whether
the handle is valid and with it the user is known to the system, and
secondly, which attributes are designated to be forwarded to the
requesting party. Having received the user attributes, the DAS will use
them to authorize the user. The authorization is currently performed by
simply comparing these attributes with some pre-defined and hard-coded
rules specifying the access to certain resources. The following two
examples show some very simple conditions that only consider two
specific user attributes (viroLabRole and organization).
(hasAttribute(viroLabRole, ”doctor”) && hasAttribute(organization,
”University of Brescia”)) ||
(hasAttribute(viroLabRole, ”virologist”) && hasAttribute(organization,
”University Medical Center Utrecht”))
To guarantee more dynamicity for specifying such access rules, the hard-
coded conditions will be replaced with a more flexible solution, by using
so-called attribute-based access control policies. Those policies can be
individually designed and especially modified by the respective data
resource owners themselves. Therefore, a central policy storage and
interpretation point is required that supports the dynamic change and
analysis of pre-defined access control policies. The concept of Policy
Decisions Points (PDP) perfectly meets those requirements for modifying
and evaluating policies on-demand and on-the-fly according the sudden
circumstances. The usage of a PDP for performing user authorization has
been already tested but still needs to be integrated with the corresponding
services’ interfaces. Apart from that, a nice graphical user interface is
being developed in parallel that allows these ad-hoc modifications for
existing access control policies and the deployment of newly designed
ones.

To explain the dependencies and interactions between several components
of the virtual infrastructure, and to highlight the aforementioned
principles, the general user authentication and authorization concept, in
particularly for ViroLab’s Data Access Services, is depicted in the following
figure.

Virolab Deliverable 2.3 – version 1.4 Page 75 of 83

Figure 54 Common ViroLab use case

To present a more technical view on the abovementioned workflow, Figure
55 displays the same scenario in form of a typical sequence diagram
showing all relevant message and data flows during the submission of a
data query. In particularly, relevant components of the security
infrastructure together with respective DAS parts are highlighted here.

Virolab Deliverable 2.3 – version 1.4 Page 76 of 83

Figure 55 Components involved in a data access process flow

Basically, the Attribute Requestor Library (see section 5above) is the only
required component of the overall security infrastructure which is directly
interacting with the DAS. The library provides common interfaces to
request user attributes from corresponding home organizations (HO).
Therefore, DAS need to pass the user’s handle as well as the current IDP
address to the particular library functions. These parameters are used to
determine the user’s HO before they are sent to the respective IDP, which
returns with a list available attributes. In case of the DAS, the obtained
attributes are then internally used (in the future, an external PDP will be
asked) to authorize a user for certain resources.

5.1.2Integration of Security with EPE
(Authentication plugin)

The Experiment Planning Environment is used, by the experiments
developers, for creating, executing and sharing experiments. To perform
these operations it is integrated with the GSEngine and the Experiment
Repository components.
As it was mentioned above, in order to ensure security they need to be
'shibbolized'. Therefore it is necessary to augment the functionality of the
EPE with an authentication and authorization mechanism. In order to fulfill
this requirement an authentication plugin has been developed. It is
integrated with the EPE environment by exposing an activator on the
workbench toolbar which leads to a dialog window (Figure 56). Its main

Virolab Deliverable 2.3 – version 1.4 Page 77 of 83

goal is to provide a user-friendly way for retrieving a Shibboleth handle
from a given Id provider on behalf of developer.

Figure 56: The authentication plugin

Clicking the toolbar button opens the authentication dialog. To retrieve the
handle the developer has to select home organization that should perform
authorization process and fill the username and password text fields. After
clicking the "Login" button the authorization process starts and if success
the handle will be returned and cached. From this moment on, the
developer is granted with access to the Experiment Repository and the
GSEngine runtime system. The authentication plugin will pass the handle
to both the Experiment Repository client and the GSEngine client. It is
done transparently thus the developer could stay focus upon his/her main
objectives.

Planned Functionalities of the Security
Framework
Security layer in the version 1 provides several functionalities, which make
flexible creating of Virtual Organizations possible. The modules at the
Home Organization site are responsible for authentication. At the Portal
site there is the integration point of all HOs (WAYF) and at the Resource
Provider site there are all modules which provide authorization
functionalities.

At the current state of work, the needed security modules have been
identified, designed, implemented and went through preliminary Proof-of-

Virolab Deliverable 2.3 – version 1.4 Page 78 of 83

Concept testing (e.g. IdP, WAYF, ShibAuthAPI, ShibRPC) Further
development should not add new features but rather focus on flexible and
practical access to this complex functionality. Examples of system aspects
we would like to focus on include:

• User-friendly user interface for editing resource access rights.
Resource owners would have possibility for flexible defining and
editing access rules.The procedure for adding new users to Home
Organizations and especially “Public Home Organization” (database
for users who do not have their own HO and IdP)

• User interface for adding and editing users in standard HO

• Some types of resources, such as GSEngine, require more in-depth
integration at the level of access policies, mapping users to small-
grained resources such as files.

Security – Conclusions
The content of this project deliverable results from the earlier assumption
of following the distributed authentication approach in the ViroLab
security, in particular based on Shibboleth implementation. The rationale
for this decision has been subject to detailed discussion in previous
deliverables [D2.1], [D2.2]. Although the goal of this deliverable is to
demonstrate the working proof-of-concept deployment of our technology,
it would be left incomplete without a reference to the valuable discussion
on the pros and cons of the distributed authentication approach. This
discussion in which our project gladly participated took part during the
“Workshop on Security and Privacy issues for bio-medical applications
based on Grid middleware” organized by the European Commission in
Brussels, May 2008, for ViroLab and five other e-Health projects.
In the previous sections we have demonstrated successful integration of
the virtual organization, which was the goal of this Deliverable D2.3.
However beyond this goal, the security team at ViroLab achieved much
more in this past year. The cross-cutting nature of security and the need
for integration resulted in tight cooperation of grassroots, informal team of
expert engineers, primarily from GridwiseTech, Cyfronet, University of
Stuttgart (HLRS), and University of Amsterdam. The need for pioneering
work on building Shibboleth-based virtual organizations resulted in
additional insight in the nature of this approach and technology.
As seen from previous chapters, integration with Shibboleth was not
straightforward and numerous features and libraries had to be
implemented from scratch. This effort was well rewarded, as we now
dispose of unique and universal software components, bridging Shibboleth
with popular technologies such as Apache Axis or SVN. In spite of some
restrictions of Shibboleth technology we continue to consider it a valuable
approach, giving us flexibility which other paradigms could not provide.
Shibboleth admittedly lacks in the area of usage cases, documentation
and configuration, but this solution is continuously developed and most of
the problems and restrictions are being eliminated step by step. Recently
the new version (Shibboleth 2.0) was released, so we will consider to

Virolab Deliverable 2.3 – version 1.4 Page 79 of 83

adopt it to ViroLab.

Today, the Shibboleth is one of the main participants in the stream of
federated authentication technologies. We spend significant amount of
time on gaining the practical experience in using that technology in
securing such sensitive resources like medical data. We identified the
strengths and weaknesses of the applied solution, and gained knowledge
which will lead to secure and reliable security framework. Our work is
dedicated to create a stable security framework. Coupled with powerful
user interface, this should remain an important impact of ViroLab.
This know-how counterbalanced by our previous, solid knowledge of
alternative solutions (PKI-family / X.509 certificate-based approach), gives
us unique collection of know-how which additionally strengthens and
complements European proficiency in the distributed security area.

Virolab Deliverable 2.3 – version 1.4 Page 80 of 83

Abbreviations
Abbreviation/Term Explanation

ViroLab a virtual laboratory for decision support in viral
diseases treatment

CCA Common Component Architecture
DAS Data Access Services
DEISA Distributed European Infrastructure for

Supercomputing
DOS Domain Ontology Store
DRS Drug Ranking System
EGEE Enabling Grids for e-Science in Europe
EMI Experiment Management Interface
EPE Experiment Planning Environment
GOI Grid Operation Invoker
GrAppO Grid Application Optimizer
GRR Grid Resources Registry
GSEngine GridSpace Engine
GUI Graphical User Interface
HO Home Organization
IDE Integrated Development Environment
IdP Identity Provider

JMX Java Management Extensions
LCG LHC Computing Grid
QUaTRO Query Translation Tools
PDP Policy Decision Point
PROToS Provenance Tracking System
RAD Rapid Application Development
SSO Single Sign-On
SVN Subversion
TLS Transport Level Security
VL Virtual Laboratory
VO Virtual Organization
WAYF Where Are You From

WP Workpackage
WS Web Service
WSRF Web Services Resource Framework

Virolab Deliverable 2.3 – version 1.4 Page 81 of 83

References
[Assel06] M. Assel, B. Krammer, and A. Loehden. Management

and Access of Biomedical Data in a Grid Environment.
In Proceedings of the 6th Cracow Grid Workshop 2006,
pp. 263-270, Cracow, Poland, October 2006.

[Assel07] M. Assel, B. Krammer, and A. Loehden. Data Access
and Virtualization within ViroLab. In Proceedings of the
7th Cracow Grid Workshop 2007, pp. 77-84, Cracow,
Poland, October 2007.

[Balis07] B. Balis, M. Bubak, and M. Pelczar. From
Monitoring Data to Experiment Information --
Monitoring of Grid Scientific Workflows. In G. Fox,
K. Chiu, and R. Buyya, editors, Third IEEE
International Conference on e-Science and Grid
Computing, e-Science 2007, Bangalore, India, 10-
13 December 2007, pages 187-194. IEEE
Computer Society, 2007.

[Balis07-2] B. Balis, M. Bubak, and J. Wach. User-Oriented
Querying over Repositories of Data and
Provenance. In G. Fox, K. Chiu, and R. Buyya,
editors, Third IEEE International Conference on e-
Science and Grid Computing, e-Science 2007,
Bangalore, India, 10-13 December 2007, pages
77-84. IEEE Computer Society, 2007.

[Bubak07] M. Bubak, T. Gubala, M. Kasztelnik, M. Malawski,
P. Nowakowski, P.M.A. Sloot: Collaborative Virtual
Laboratory for e-Health; in P. Cunningham and M.
Cunningham, editors, Expanding the Knowledge
Economy: Issues, Applications, Case Studies,
eChallenges e-2007 Conference Proceedings, pp.
537-544. IOS Press, Amsterdam, 2007.

[Ciepiela07] E. Ciepiela, J. Kocot, T. Gubala, M. Malawski, M.
Kasztelnik, M. Bubak: Virtual Laboratory Engine -
GridSpace Engine; in Cracow Grid Workshop 2007
Workshop Proceedings, pp.53-58, ACC CYFRONET
AGH 2008

[D2.1] ViroLab Project. D2.1 – State of the art Suvey, Design
and Workpackage Spcification, ViroLab Project
Consortium, 2006

[D2.2] ViroLab Project D2.2 - Architecture for presentation
layer. VO pilot deployment with basic middleware for
data access, resourcemanagement , and information
systems - report and demonstration, Virolab Project
Consortium 2007

[D3.1] ViroLab Project. D3.1 - State of the art Survey, Design
and Workpackage Specification. ViroLab Project
Consortium, 2006

[D3.2] ViroLab Project. D3.2 – Design of the Virtual
Laboratory. ViroLab Project Consortium, 2007

Virolab Deliverable 2.3 – version 1.4 Page 82 of 83

[D3.3] ViroLab Project. D3.3 – Session Manager, runtime
system and data layer: installation, integration and
usage; description of interfaces to WP2, WP4 and WP5 -
report and demonstration. ViroLab Project Consortium,
2007

[D3.4] Virolab Project, Deliverable D3.4: Integration of
presentation layer and session manager, workflow
provenance system and process flow template - report
and demonstration

[D3.3-A2] ViroLab Project, Deliverable D3.3 Appendix 2: ViroLab
Virtual Laboratory:Experiment Developers’ Manual

[EPEMI] Environment for collaborative development and
execution of virtual laboratory applications, Wlodzimierz
Funika, Daniel Harezlak, Dariusz Krol, and Marian
Bubak; Accepted to the ICCS’08 conference, June 2008,
Krakow, Poland

[EXP] ViroLab experiments repository
https://svn.gforge.hlrs.de/svn/virolab/trunk/experiment
s

[MOCCA] Maciej Malawski, Dawid Kurzyniec, and Vaidy
Sunderam, MOCCA – towards a distributed CCA
framework for metacomputing. In Proceedings of the
10th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS2005), 2005

[POM] Maven - Introduction to the POM
http://maven.apache.org/guides/introduction/intorducti
on-to-the-pom.html

[SeRQL] The SeRQL query language (revision 1.2),
http://www.openrdf.org/doc/sesame/users/ch06.html

[SESAME] User Guide for Sesame 2.0,
http://www.openrdf.org/doc/sesame2/2.0.1/users/inde
x.html

[Shibboleth] Shibboleth, http://shibboleth.internet2.edu/
[TBCA] A Tool for Building Collaborative Applications by

Invocation of Grid Operations, Maciej Malawski, Tomasz
Bartyński, Marian Bubak; Accepted for the ICCS’08
conference.

[VIROLAB-VL] The ViroLab Virtual Laboratory Website.
http://virolab.cyfronet.pl/

[VLINV] Invocation of Grid Operations in the ViroLab Virtual
Laboratory, Tomasz Bartyński, Maciej Malawski, Marian
Bubak; in Cracow Grid Workshop 2007 Workshop
Proceedings, pp.59-64, ACC CYFRONET AGH 2008

Virolab Deliverable 2.3 – version 1.4 Page 83 of 83

http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a05-invoca.pdf?format=raw
http://virolab.cyfronet.pl/
http://www.openrdf.org/doc/sesame2/2.0.1/users/index.html
http://www.openrdf.org/doc/sesame2/2.0.1/users/index.html
http://maven.apache.org/guides/introduction/intorduction-to-the-pom.html
http://maven.apache.org/guides/introduction/intorduction-to-the-pom.html
https://svn.gforge.hlrs.de/svn/virolab/trunk/experiments
https://svn.gforge.hlrs.de/svn/virolab/trunk/experiments

	Executive Summary
	1Overview of ViroLab Virtual Organization
	2Demonstration of the ViroLab VO
	3Presentation Layer
	4Middleware
	5Security
	5.1.1.1AttributeRequestor
	5.1.1.2PolicyResolver
	5.1.1.3Usage example
	5.1.1.4Apache Axis2 module
	5.1.1.5Apache Axis2 service
	5.1.1.6Apache Axis2 client
	5.1.1.7ShibAxis at work
	5.1.1.8Usage example
	5.1.2Integration of Security with EPE (Authentication plugin)

	Abbreviations

