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1

Introduction

Many areas of biology and medicine are being revolutionized by the introduction
of new experimental techniques, accompanied by informatics methodologies
that fundamentally change the way that investigators do their work.

—Russ B. Altman and Teri E. Klein
"Challenges for Biomedical Informatics and Pharmacogenomics",

Ann. Rev. of Pharm. and Toxic., 42:113-133, 2002

1.1 Background

Themost important goal in Biomedical Informatics is to advance the quality of
health care and the breadth and depth of its reach in society. Working towards
the purpose of covering the whole healthcare spectrum, from prevention to
treatment to rehabilitation, experts in the field have been focusing in the last
few years on complex issues such as large-scale data integration and resource
interoperability [116,136]. These new foci of research are causing a technolog-
ical revolution in the field, where unprecedented amounts of biomedical digi-
tal information produced by data-intensive applications are rapidly changing
the way computer scientists think about and design sofware architectures.
It is widely acknowledged that larger amounts of digital data are being

generated by next generation large-scale, collaborative e-Science experiments

1



2 INTRODUCTION

[86]. New computational experiments in science and engineering need to
cover the whole biomedical spectrum for the simulation of complete biolog-
ical systems. The gradual introduction of electronic patient records and dis-
tributed bioinformatics data warehouses is expected to increase digital image
storage and processing dramatically in the short to medium term. For in-
stance, bioinformatics data storage systems used by the Protein Databank [27],
Swiss-Prot [31], and the EMBL Nucleotide Sequence Database [146] projects
include a variety of increasingly complex numeric, textual and image data,
offering gene sequence data handling in the order of Gigabytes (109 bytes);
this may even expand to the order of Petabytes (1015 bytes) when structure
measurements of proteins are required.

1.1.1 The Data Digitalization Challenge

Biomedical informatics is steadily evolving into a research field that encom-
passes the use of all kinds of biomedical information inmore integrative ways,
from genomics and proteomics to medical data in clinical settings. The main
fields comprising biomedical informatics research areMedical Informatics and
Bioinformatics, whose subfields are firmly established in academia and indus-
try (Table 1.1).

Table 1.1: Biomedical Informatics subfields at a glance; large institutional funding bod-
ies such as the European Commission have in recent years started to fund a number of
initiatives to explore such potential synergies between the different biomedical infor-
matics subfields, as shown by Martin-Sanchez et al. [115]

Medical Informatics Bioinformatics

Health Information Systems Genomics
Medical Decision Support Sys-
tems

Proteomics

Language and Classification
Systems

Structural Bioinformatics

Telemedicine Sequence Databases
Statistics Computational Analysis

As P. Miller [120] showed during the American College of Medical Infor-
matics Symposium in 2000, recent technological developments offer biomed-
ical informatics researchers easy access to the potential cross-fertilization of
bioinformatics with the clinical world. Miller presents the correlations be-
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tween individual genetic variation and clinical risk factors, as well as differ-
ential response to treatment. R. Altman [8] also presents a clear case for the
complementarity of clinical informatics and bioinformatics research, tracing
the intersection of the fields back to the Dendral Project [143] in the 1960s.
Altman identifies a number of "affinity groups" in biomedical computation,
which may be of particular interest to system architects:

• Image acquisition and analysis,
• structural biology and genetics bioinformatics,
• biomechanical modeling for macroscopic systems,
• computer-assisted interventions and robotics,
• data modeling, statistics, and informatics,
• networked and computer-enabled education.

The interest in biomedical informatics has resulted in notable increases in
the number of scientific publications on the field in the last few years. For
instance, Ammenwerth and de Keizer [10] found that while the number of
papers on medical informatics alone available in the PubMed online repository
in 1983 (including hits between 1982 and 2002) was already around 45,000, the
overall number of published medical informatics evaluation studies increased
steadily during that period of time (Figure 1.1).
Medical Informatics, often also called Health Informatics, requires data

models and software architectures for the creation, maintenance and commu-
nication of image-based medical records [28], complex decision support sys-
tems [19], and controlled medical vocabularies [54] among others. The first
references to organized informatics for medicine go back to the early 1950’s
with Gustav Wagner and his Deutsche Gesellschaft für Medizinische Doku-
mentation, Informatik und Statistik [130]. The field, though, is usually con-
sidered to be rooted in the early work on foundations of decision making by
Von Neumann and Morgenstern [158], and in the seminal work by Ledley et
al. [106], on the reasoning foundations of medical diagnosis. It was in France
in the 1960’s that the term Informatique Medicale first appeared in academia.
Expert systems eventually started to become a focus of attention, particularly
in the United States, with MYCIN [44] a prime example. These developments
were followed by the development of tools for the support of text-based clini-
cal records, such as the popular MUMPS programming system by Pappalardo
et al. [111]. Eventually, models for image format and communications such
as the Digital Imaging and Communications for Medicine (DICOM) model
started to offer support for basic image-based connectivity and data transfer.
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Figure 1.1: The overall number of published evaluation studies on medical informat-
ics for the period 1982 - 2002 in the PubMed system, which shows 10-fold increase
and suggests increasing interest in the field, from Ammenwerth E, de Keizer N., "An
inventory of evaluation studies of information technology in health care: Trends in
evaluation research 1982 - 2002", Methods Inf. Med. 2005; 44:44-56

Bioinformatics usually focuses on the use of techniques from mathemat-
ics and computer science to address complex biological problems such as
sequence alignment [53, 87], comparative and functional genomics [46], pro-
teomics [129], and prediction of gene expressions [135]. As put forward al-
ready in the 1970s by P. Hogeweg [88]: "(Bioinformatics is) The science of
information and information flow in biological systems, especially of the use
of computational methods in genetics and genomics." The field can be con-
sidered to have started with the 1977 DNA sequencing of Φ -X174 by Sanger
et al. [133], and took noticeable impulse with the eventual development of
alignment search tools such as BLAST by Altschul et al. [9], and the first full-
fledged genome annotation software system, TIGR Assembler, by White et
al. [148]. The recent completion of the Human Genome Project has provided
an explosive boost to the field.

Physicians, technologists and scientists require easier access to incremen-
tally larger and more complex resources, as well as methods for the efficient
extraction of biomedical knowledge from available data, leading us to the fol-
lowing observation:
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Due to digitalization, we now face a biomedical data deluge: large amounts of
medical and genomic digital data have been produced in recent years by appli-
cations using data-driven information management systems, data integration
and distribution models.

1.1.2 The Changing Nature of Biomedical Informatics Data

The nature of data generated by biomedical applications is changing rapidly.
For instance, Critchlow et al. [56], from the Lawrence Livermore National Lab-
oratory discuss how new knowledge acquisition in the field is being driven by
amove to amore complex discovery-verification paradigm, where informatics
support is increasingly crucial to handle new correlations between biological
components and their digitized data.
Most medical imagingmodalities nowadays produce digital data [1], mak-

ing the issues related to large storage capacity more complex than ever. There
is a growing range of applications producing multi-dimensional digital im-
ages available to the clinician at present, such as X-ray, ultrasound, Magnetic
Resonance Imaging (MRI) and Computer Tomography (CT), among others.
Some of the latest technology on CT scanning modalities allows nowadays
the creation of three-dimensional (3D) multislice patient data, like in the case
of Philips’ Mx8000 Multislice scanner which provides a quad-multislice sys-
tem with maximum rotation time of 0.42 seconds per turn.
More than textual patient data, medical images represent themajor amount

of digital data collected for medical purposes. However, medical images are
not sufficient by themselves, as they may need to be interpreted and analysed
in the context of the patient’s medical record. Patient management (diagnosis,
treatment, continuing care, post-treatment assessment) is rarely straightfor-
ward. There are a number of factors that can make patient management based
onmedical images particularly difficult: medical data may be distributed over
a number of acquisition sites, with data concerning one patient not necessar-
ily located in a single location nor accessible through a unified interface [2].
Physicians most often have no simple way to access the medical records of all
their patients, and the patients’ digital images they require are often part of
very large data files with complex data and structure that may include anno-
tations, regions of interest, and other types of clinically significant metadata.
In many cases, no single imaging modality suffices, since there are many pa-
rameters that affect the appearance of an image, and their complementary
information is captured by different physical acquisition systems [114]. Such
systems increasingly communicate via a local networkwithwhat is commonly
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called Picture Archiving and Communications Systems (PACS), sort of stan-
dardized image data repositories within hospitals or across distributed sites.
There are valid reasons for the distributed nature of biomedical data. For

instance, medical image data are used in diagnosis, continuing care, and ther-
apy planning. For diagnosis, medical images acquired in a medical centre are
sometimes visualised and interpreted immediately after acquisition by a tech-
nologist before being sent to a physician for second viewing [59, 149]. These
two readings normally take place in different offices, and possibly even in dif-
ferent sites. For therapy follow-up, even more clinicians may be involved as
images acquired at different times may be acquired in different radiology cen-
tres and several physicians may need to read them. For therapy planning and
assisted intervention, images may also need to be accessible from the inter-
vention room [50, 157]. Increasing complexity in data leads to the following
observation:

The nature of biomedical data is evolving: we now have to process increasingly
distributed, heterogeneous, and complex kinds of data.

1.1.3 From Image Transfer to Interactive Collaboratories

Computational science technologies and architectures are evolving to address
ever more complex demands from biomedical scientists. Software design is
currently receiving increased attention by biomedical researchers [20, 126],
suggesting the emergence of software architecture design as a major disci-
pline in biomedical informatics [155, 160]. This takes the design problem, as
Garlan et al. put it, "beyond the algorithms and data structures of the com-
putation: designing and specifying the overall system structure emerges as a
new kind of problem" [75].
The design of interactive collaboration within complex architectures aims

to enhance the productivity and effectiveness of multidisciplinary biomedi-
cal applications. These applications result from the convergence of different
approaches to architectural design, such as relational, object-oriented, compo-
nent, and client/server technologies. These technologies allow computer sci-
entists to spread software components across organizations via computer net-
works that communicate as a unified whole, and modeled in different granu-
larities and levels of formalization (Figure 1.2). Computer systems have gone
through an impressive progression in the last 30 years. This transition, rang-
ing from computer mainframes to symmetrical multi-processing (SMP) and
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(a) layered representation (b) description language

Figure 1.2: Generic software architectural representations; clockwise: (a) a layered
middleware-centric model of a multi-tier software architecture, and (b) description of
a generic Client/Server software architecture in the ACME description language [74]

non-uniform memory architecture (NUMA) machines to high-performance
clusters, is the product of significant advances in hardware technology.
Hardware advances have also extended to developments in biomedical

modality technologies [5, 66], computer based drug design [100, 162], digi-
tal storage capacity and mining [62], as well as medical imaging and sim-
ulations [60]. Computation intensive applications that analyze 3D and 4D
digital images or simulate medical surgery scenarios are certainly good news
for biomedical scientists and clinicians, but pose great demands on system
design. System architects now have to design systems with increasing high
demand for large computational power and access to highly distributed and
heterogeneous data sources.
In Medical Informatics, new approaches are being researched to improve

interoperability and integration of distributed applications with legacy sys-
tems, such as Steward’s work on architectural approaches for medical data
integration [145]. Bioinformatics issues have historically been related to im-
proving collaboration frameworks for bioscientists and computational scien-
tists [48, 96], as well as access to distributed databases consisting of hetero-
geneous types of growing amounts of data. For instance, Grethe et al. [78]
describe the collection of large amounts of heterogeneous data as the first step
in the biomedical experimental process; sharing and processing such data, as
they show, requires non-trivial developments on the architectures that sup-
port the scientific process.
Access to such sheer amounts of biomedical data produced every day at

clinical settings, together with the long-term archiving of data for pathology
and epidemiology studies [63], represent big challenges for software archi-
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tects. Distributed technologies, standards and models are driving the devel-
opment of new approaches to software architectures in order to address these
issues. One of the best examples of models for representation and transfer of
digital biomedical image data is the Digital Imaging and Communications for
Medicine (DICOM) model, the current default standard for biomedical image
representation and access within hospitals worldwide [101]. The American
College of Radiology (ACR) and the National Electrical Manufacturers As-
sociation (NEMA) created a joint committee in 1983 to address the problem
of developing a standard model for communication between medical imag-
ing equipment, its associated information and user applications [118]. The
DICOM model was developed by this effort to meet the needs of manufac-
turers and users of medical imaging equipment on standard networks. It
also provided a means by which users of imaging equipment may determine
whether two devices are able to exchange information, facilitate communi-
cation in networked environments, and connection of PACS to specialized in-
formation systems such as Hospital Information Systems (HIS) and Radiology
Information Systems (RIS). Initially known as ACR-NEMA in its versions 1.0
and 2.0, it became DICOM in its version 3.0, released in 1991. This version
also offered an Object-Based design and support for the Transmission Control
Protocol/Internet Protocol (TCP/IP) [144] and Open Systems Interconnection
(OSI) [58] protocol stacks, describing an image format, a communications pro-
tocol between an image server and its clients, and other data access capabil-
ities (Figure 1.3).
DICOM’smodel is gradually beingmade interoperable within related data

models such as the Health Level Seven (HL7) [21] clinical and administra-
tive standard for healthcare services [49]. HL7’s Reference Information Model
(RIM) and object-oriented development methodology provide an explicit rep-
resentation of the semantic and lexical connections for information to be car-
ried across information systems. DICOMwas amilestone in the state of the art
for Medical Informatics modeling and communications. Nevertheless, a num-
ber of important issues hamper its scalability within large distributed organi-
zations that are emerging in biomedical informatics research. For instance, the
first step in sending a DICOM image is to establish data connections between
the two machines for the negotiation of the details of the image transmission,
with security mechanisms between communication networks configured to
allow passage of information between the sites. This naturally does not scale
well. Also, since DICOM is specified in terms of individual components, when
two systems support sending DICOM images, but neither knows how to re-
ceive and store them, then these devices will have trouble interconnecting, let
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Figure 1.3: Representation of the DICOM communications model, where a subset of
the OSI services working in conjunction with IP transport protocols for connection
establishment and message transfering via gateways

alone interoperating.
There has been a number of efforts to extend the original DICOM model

from its relational and static architecture into more dynamic and scalable dis-
tributed component architectures [13, 67], aimed to improve the prospects for
distributed transparency and scalability. Nevertheless, new distributed archi-
tectures that build on the state of the art while addressing the complex nature
of highly distributed biomedical applications securely and transparently are
clearly needed.

Advances in Bioinformatics

Bioinformatics applications continuously increase in size, complexity and het-
erogeneity [16] as well. As put forward by T. K. Attwood [14], bioinformatics
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will need interoperable applications that allow users the access to disparate
data sources in order to enable knowledge-based inference and innovation.
In Bioinformatics, main architectural issues include data acquisition, repre-
sentation, archival, retrieval, compatibility, provenance, and consistency. A
number of complex data-centric tools based on distributed architectures are
being developed by researchers, though not at a comparable rate as gene and
protein data are made available by the research groups all over the world.
Like in medical informatics, there is a strong need for architectures that fa-
cilitate seamless integration and interoperability of new bioinformatics sys-
tems and applications with legacy systems and databases. There is already
an important body of work in, e.g., distributed database query systems [57],
standards for data representation and exchange [137], and even web-based ar-
chitectures [73]. Such systems are designed to provide clusters that are tightly
integrated with data servers, providing high volume processing. Nevertheles,
these kinds of approaches to large scale integration and distributed data ac-
cess have been found to be limited in terms of query power [98], and normally
require a centralized design that does not scale well with distributed systems.

Interactive Collaboratories

Recent cutting-edge research efforts in the field are exploring the use of highly
distributed software architectures for the setup of dynamic, loosely-coupled
data storage and computational resources, as in Cannataro’s Proteus [47], or
Sloot’s ViroLab [142]. ViroLab is a good example of such systems, where a
decision support system for the interpretation of genotypic resistance is being
integrated within a distributed virtual laboratory. The aim there is to achieve
seamless access to large amounts of experimental hospital data from databases
and archives within a large, distributed and dynamic virtual infrastructure, al-
lowing hierarchical data flow models (Figure 1.4) to be seamlessly integrated.
This kind of applications assist clinicians and researchers in choosing ef-

fective therapeutic alternatives, using large amounts of highly distributed and
heterogeneous experimental hospital data from databases and archives [138].
Efforts like these explore the boundaries in new kinds of software architec-
tures that leverage, instead of ignore, the dynamic characteristics of highly
distributed virtual organizations. These issues become particularly relevant
when they involve the integration of resources from highly distributed infras-
tructures, such as the ones formed by large, loosely-coupled organizations that
offer unified access to distributed computational services and resources. Com-
putationally intensive and distributed Problem Solving Environments (PSEs)
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Figure 1.4: General architecture for conducting e-Science research: information sys-
tems integrate available data with data from specialized instruments and sensors into
distributed repositories. Computational models are then executed using the integrated
data, providing large quantities of model output data, which is mined and processed
in order to extract useful knowledge [142]

are a good example of such systems.

As argued by Houstis et al., Problem Solving Environment means different
things to different people [90], but can be succinctly described as "a computer
system that provides all necessary computational facilities to solve a target
class of problems". Houstis suggests that such facilities should be accessible
without the need for specialized knowledge of the underlying computer hard-
ware or software system. One of the more interesting recent approaches to ad-
dress these issues, from the distributed computing viewpoint, is that of Grid
computing, as defined by Foster, Kesselman, et al. in their seminal works on
the basis of Grid architectures [71] and a service-based approach to Grids [69].
Grid computing offer PSEs the concept of dynamic virtual organizations, where
members may pool their their resources transparently and make them avail-
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Figure 1.5: Graphical representation of a multi-VO Grid infrastructure, where differ-
ent, dynamic topologies allow members of the Grid VO to share their resources se-
curely and transparently.

able to a trusted virtual community.

Grid Computing

Grid Computing [68] is a distributed computing paradigm that offers system
architects the possibility to design architectures that provide secure and seam-
less access to multiple distributed data and computational resources. This is
achieved by allowing users to share such resources within (possibly multi-
ple) Grid Virtual Organizations (VOs) (Figure 1.5), supported by middleware
based on open standards.
The vision of Grid Computing, or utility computing, as it is also known, is

based on the access to computing and data resources from a virtual infrastruc-
ture that mimics the electrical industry’s power Grid. That is, users should
not have to own or care where available computing resources are, as long
as there is a reliable and secure way to access them. In comparison, tightly-
coupled systems based on relational and classic object-oriented models im-
pose overhead in order to enable communication, and require higher levels of
understanding between systems. Loosely-coupled systems like Grids allow
distributed systems to be able to create composite services and to disassemble
easily into their functional components.
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Grids are often classified as Computational Grids or Data Grids. Compu-
tational Grids aggregate the power of individual computers into the com-
putational capabilities of virtual supercomputers. Data Grids, on the other
hand, aim to create aggregated virtual repositories that give users access vast
amounts of data and storage capacity previously unavailable, using transpar-
ent higher level services such as replica location services. Nevertheless, as
shown by Nemeth et al. [123], fundamental differences between Grids and
more traditional kinds of distributed systems (Table 1.2) provide a strong ra-
tionale for rethinking current approaches to distributing computing for com-
plex problem-solving.

Table 1.2: A comparison between conventional distributed environments and Grids,
from Z. Nemeth and V. Sunderam, "Characterizing Grids: Attributes, Definitions, and
Formalisms", Journal of Grid Computing, 1: 9-23, 2003

Conventional Distributed En-
vironments

Grids

A virtual pool of computational
nodes

A virtual pool of resources

Access to all the nodes in the
pool

Access to the pool but not to in-
dividual nodes

Access to a nodemeans access to
all resources in the node

Access to a resource may be re-
stricted

The user is aware of the capabil-
ities and features of the nodes

The user has little or no knowl-
edge about individual resources

The nodes belong to a single
trust domain

Resources span multiple trust
domains

The elements in the pool are 10-
100, more or less static

Elements in the pool »100, dy-
namic

The Grid was originally proposed as a layered architecture providing a
lower layer called the fabric that comprises the hardware and interfaces to
local control of computational, storage, and network resources. On top of
the fabric, a connectivity layer contains the core communication and authen-
tication protocols for network transactions. Next, the resource layer provides
the information and management protocols required for the secure negotia-
tion, initiation, monitoring, control, and accounting of Grid resources. On
top of this, the collective layer contains the directory, co-allocation, scheduling,
brokering, monitoring, diagnostics, data replication, workload, discovery and
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other global services that are not associated with specific resources. Finally,
the top layer of the model is reserved for the application layer, which contains
the user applications that run on the Grid infrastructure. Such infrastructure
usually provides secure access to resources via a standard security mecha-
nism, such as Public Key Infrastructure (PKI) [150], that authenticatesmembers
of a VO. Authorization is delegated to local resource owner policy [70]. A set
of base middleware components [68] takes care of data management, execu-
tion management, information services, and security services, while higher
level services such as resource brokers [89] may be deployed to hide the lower
level infrastructure from the user.
This evolution from simple datamanagement all the way to interactive col-

laboratories can be based on loosely-coupled and potentially concurrent ap-
proaches such as Grid computing, which provides new toolboxes for building
distributed system architectures. System-level integration of complex simula-
tion and other services into widely distributed scientific collaboration is now
a real possibility. This is a fundamental change in the way system architects
and biomedical scientists may approach new challenges in the field, and leads
us to the final observation in this chapter:

The changing nature of biomedical data requires a paradigm change: new tech-
nological advances in simulation, visualization, and collaboration as support-
eded by Grids can be required for producing accurate and meaningful biomed-
ical information.

1.2 Objectives of this Work

Connectivity between distant locations, interoperability between diverse sys-
tems and resources, and high levels of computational performance are some
of the most promising features of the Grid. In the case of biomedical ap-
plications, issues such as remote access to patient data, medical knowledge
bases, advanced visualization technologies and specialized medical instru-
ments are of the most importance. For these applications, Grid technology
provides dedicated support such as security, distributed storage capacity, and
high throughput over long distance networks. Besides these immediate bene-
fits, the computational resources of the Grid provide the required performance
for large scale simulations, complex visualization and collaborative environ-
ments, which are expected to become of major importance to many areas of
medicine.



1.2 OBJECTIVES OF THIS WORK 15

In this work we specifically investigate issues related to dynamic sharing
of digital resources such as computational power, data, applications and in-
struments for supporting the acquisition of biomedical information. Computer
science in general, and the Grid computing paradigm in particular, provide the logic,
the language and the tools needed to study and understand modern complex biomed-
ical systems. In this chapter, we identified a number of observations about
the current state of the art in technology for the support of biomedical infor-
matics research.
Complex interactivity using distributed, multi-dimensional biomedical re-

sources clearly requires new approaches that identify environments, architec-
tural constructs and tools for reasoning about the system. This need for new
approaches lead us to the research questions to be addressed in this work:

• Is there a distributed environment for collaborative biomedical

informatics in the state of the art in data communications and

distributed technology?

• What new modeling abstractions, methods and tools can we use

to reason about such kind of environment’s architecture?

• Can we identify temporally invariant components and aspects

of data interaction which are present in biomedical informatics

applications?

These questions provide the basis for determining the scientific aims of this
thesis, by logically extending them in the form of specific objectives. These
objectives are defined as follows:

• Objective 1: To design and prototype software architecture models that sup-
port distributed virtual laboratories for interactive collaboration (i.e., collabora-
tories), building on the state of the art, and reason about them, using runtime
components that enable the virtualization of distributed resources within dy-
namic trust domains.

• Objective 2: To identify software components for biomedical informatics that
may remain invariant against next generations of technology, and once they are
identified, map them to distributed systems.
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We take a progressive approach towards these objectives, from a system
architecture viewpoint, analyzing and validating a number of incrementally
complex distributed system architectures for biomedical informatics applica-
tions.

1.3 Thesis Roadmap

This work is divided up into six chapters, of which chapter one is the present
introduction. In chapter two we describe our approach to the methodologies
used in this work for the analysis of information models and architectures,
and the rationale behind our approach. We describe a formal approach, based
on an actor model of computation, as well as a feasibility approach based on
prototyping, laying the baseline we use to address the stated objectives 1 and 2.
Chapter three focuses on case studies in which we describe the DICOM model
and elaborate on some of its most notable shortcomings, and extend its func-
tionality using object-oriented and component models for interoperability of
data access, therefore beginning our progressively more complex prototyping
and analysis required to address objectives 2 and 3. Chapter four presents our
experiments and in-depth analysis of a complex biomedical problem solving
environment within an interactive Grid infrastructure, where we use Grids for
addressing our requirements for interactive biomedical applications in highly
distributed environments. We use application benchmarking and online mon-
itoring to characterize the prototype, addressing objectives 2 and 3. In chapter
five we conclude our progressive analysis with a distributed bioinformatics
support-decision system in which collaborative discourse among biomedical
researchers is a main area of concern. We finalize in chapter six, where we
elaborate on our results and present our conclusions and elaborate on what
we consider potentially interesting future work in the field.



2

Research Approach

More generally, the π calculus is a formal calculus, while the Actors model,
in spirit closer to the approach of physics, sets out to identify the laws
which govern the primitive concepts of interaction

—Robin Milner
Turing Award lecture, 1993

2.1 Introduction

In this chapter we lay out our roadmap or approach to the analysis of dis-
tributed software architectures for biomedicine. We first describe some of the
most popular and potentially useful methods for architectural representation
of distributed and concurrent systems, and then elaborate on the rationale for
the approach chosen in this thesis. This approach is focused on the use of
feasibility studies coupled with a formal abstraction for architectural analy-
sis. The aim here is twofold: to find a methodology that eases the analysis
of biomedical systems based on distributed computing models ranging from
relational, to object-oriented and component-based, to service-oriented com-
puting, and use such methodology to reason about a number of application
architectures in a series of increasingly complex use cases.

17
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2.2 Approach

In-depth analysis of real architectural components and the distributed envi-
ronment that bridges them into large scale, loosely-coupled and concurrent
systems systems is, naturally, not a trivial task. In this thesis our approach
is therefore to start with modeling, prototyping, and analyzing simple soft-
ware architectures used for supporting distributed biomedical applications,
and then move on to more complicated systems. Scalability and seamless re-
source sharing are at the heart of our approach to the design and analysis
of interactive architectures. In the present work we focus on the two simplest
kinds of interactivity which allow user analysis and response generation: level
1 linear sequencing or one way interactivity where users can monitor execu-
tion and see the output of the application online, once the application finishes
execution; and level 2 linear sequencing with feedback or two way interactiv-
ity, where users can receive output from the running application online, syn-
chronously while the application continues execution, and react to it. We do
not address the third level of interactivity, where real-time steering of the run-
ning application takes place. As case studies for validation of our approach,
we work with increasingly complex applications, as depicted in Figure 2.1.

Distributed computing is a rapidly changing, evolving field. It was not
long ago that local and wide area network capacity hindered the efficient use
of remote resources for computationally expensive applications. In this the-
sis we start our analysis with DICOM-based simple services for sharing digital
medical image content, first in the context of enterprise data sharing interoper-
ability and then in the context of a seamless data transfer service within telera-
diology applications. We next model and implement a more complex, compu-
tationally intensive biomedical application for blood flow simulation [11, 12]
which is part of a problem solving environment developed within the Uni-
versity of Amsterdam’s Polder Project [94]. This biomedical environment, the
Virtual Radiology Explorer (VRE) [25], provides important challenges for data
access, image processing, simulation, and visualization that are computation-
ally intensive, using parallel implementation technologies in order to get ex-
ecuted in a reasonable amount of time. For its implementation and valida-
tion we use middleware and higher level components offered by the Euro-
pean CrossGrid Project [43] infrastructure. Finally, we analyze a collaborative
bioinformatics application, the ViroLab [142], a virtual laboratory for deci-
sion support in viral diseases treatment. This multi-scale collaboratory aims
to facilitate medical knowledge discovery and decision support for, e.g., HIV
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Figure 2.1: High-level representation of our approach to incrementally complex dis-
tributed system analysis: from a distributed application for digital image access, to an
interactive simulation-centric problem solving environment, to a virtual collaborative
laboratory on the Grid

drug resistance, using a Grid-based service oriented architecture to vertically
integrate the biomedical information from viruses (proteins and mutations),
patients (viral load) and literature (drug resistance experiments).

2.3 Methodology

We start our analysis of distributed biomedical applications by researching
increasingly complex case studies, using the technique of feasibility study via
prototyping. We expect this approach to answer basic questions on whether
the technology needed for the system exists and howdifficult they are to build.
There is a great deal of work in the literature related to software architec-
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ture modeling languages. The Unified Modeling Language (UML) [35], for
instance, provides standard, widely adopted high-level descriptional seman-
tics. At lower levels of architectural description we find more formal descrip-
tion approaches such as the popular Petri Nets [127] method, and the classical
π and λ process calculi. Nevertheless, while high-level formalisms like UML
present a very clear view of the macroscopic properties of a system, low-level
ones like Petri Nets and process calculi normally represent a very detailed
microscopic representation of system components’ control flow. Recent trends
in distributed computing, such as the use of dynamic virtual organizations
that offer users the access to large numbers of resources, possibly concur-
rently, may be better suited for mesoscopic architectural models that support
distributed and potentially concurrent computation.
We complement our prototyping with one of such mesoscopic models of

system representation, the actor model of concurrent computation. In this chap-
ter we briefly present some of the techniques available in the state of the art,
and offer the rationale for our chosen actor-oriented approach.

2.3.1 Prototyping

In software enginering, a feasibility study is an analysis of possible architec-
tural solutions to a system’s design, in order to arrive to the best possible fit.
During this process, architects design and evaluate how an architecture will
fit into the general approach, or whether new requirements can be met by a
new approach that may be more efficient than the one currently used in the
state of the art. A feasibility study can be used to build and analyze a new
system, shedding very important light on whether the software architecture
suits its purpose, technological advancement may render current approaches
redundant, the technology base allows to cope with higher work loads or new
types of process flows, users are satisfied with the quality of experience while
working with the system, and other issues.
Feasibility studies can be carried out by prototyping. This is the process of

putting together a basic workingmodel, or prototype, in order to evaluate var-
ious aspects of the system’s architecture and performance, and get early user
feedback. Prototyping can be considered as an integral part of the system de-
sign process. In this thesis, we work with prototypes of complex biomedical
informatics systems in a development stage, focusing on a relevant subset of
the intended systems. We assume that the prototypes are intended for exper-
imental purposes, in order to provide us with a working model for analysis
using more formal models of architectural analysis.
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2.3.2 Modeling Distributed Concurrent Systems

In distributed infrastructures for interactive biomedical applications the ini-
tial descriptions of the architectural vision for communication with the stake-
holders are usually informal, and even ad-hoc. The common approach is
to use diagrammatic constructs such as layered and flow diagrams, offer-
ing poor semantics as basis for later logical architectural designs like class
diagrams. The situation is aggravated when applied to systems that are dis-
tributed and show concurrent behaviour. Collaborative systems may be nec-
essarily loosely-coupled in order to support virtual organizations which dy-
namically share complex applications and components. For distributed ap-
plications to fully leverage current technologies, system architects have to ad-
dress the integration of highly distributed and potentially heterogeneous data
and computational resources. Also, distributed collaborative systems, just as
standard local and non-local concurrent systems, rely on the use of shared
resources and therefore require some form of concurrent access to such re-
sources.

2.4 Existing Modeling Formalisms

We next briefly describe some formalisms that may be used to describe the
prototyped distributed architectures in our use cases, or parts of them, partic-
ularly when concurrency and resource distribution are relevant.

2.4.1 Macro-level: The Unified Modeling Language

The Unified Modeling Language (UML) [35] is a way of specifying, visual-
izing, constructing, and documenting components of software systems. The
conventional UML notation uses the basic principles of object-orientation to
model system structure and behavior, defining components with object analy-
sis and design concepts such as objects, classes, stereotypes, and relationships
(Figure 2.2).
UML is not amethod, though it was designed to be compatible with object-

oriented software development methods such as OMT [15] and Booch [33].
The UMLmodel provides a set of diagrams, which are partial graphical repre-
sentations of a system’s architectural design, used within standardized mod-
els such as:
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Figure 2.2: A simple UML component diagram, showing XML transformation compo-
nents that are linked by "uses" relationships

• A functional model, which contains the functionality of the system from
the user’s viewpoint (Use Case diagrams),

• an object model, showing the structure and substructure of the system
using objects, attributes, operations, and associations (Class diagrams),

• a dynamic model, containing the internal behavior of the system (Se-
quence diagrams, Activity diagrams, State Machine diagrams).

UML is widely recognized and used, though it is frequently criticized for
a number of well-known deficiencies. For instance, UML is commonly con-
sidered as being too large and complex, using many diagrams and constructs
that are redundant or infrequently used. Also, it is considered to have impre-
cise semantics, specified by a combination of an abstract syntax, some well-
defined formedness rules, and basic English language, lacking the rigor of
a language precisely defined using formal techniques. Finally, UML’s value
in approaches that compile the models to generate source or executable code
may not be relevant since UML, as a language, does not exhibit Turing com-
pleteness and any generated source or executable code would be limited to
what a UML interpreting tool can discern or assume.
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2.4.2 Micro-level: Petri Nets and Process Calculi

Petri Nets (PN) is a graphical and mathematical language for modeling com-
plex systems [127]. PN is a generalization of automata theory in which the
concept of concurrency can be easily expressed. PN consist of Places and Tran-
sitions, as well Input and Output Arcs. Arcs connect Places with Transitions;
Input Arcs go from a Place to a Transition while Output Arcs go from a Tran-
sition to a Place. Places may contain tokens to simulate the dynamic activities
of the system; the number and type of tokens in each place define the current
state of the system. Transitions are the active components that represent the
activities that may change the state of the system; a Transition may only oc-
cur when all preconditions for the activity are fulfilled. When a Transition is
fired, a number of tokens are removed from its Input Places and added to its
Output Places; new tokens may be placed in the Input Places. The number of
tokens removed depends on the cardinality of each arc. The interactive firing
of Transitions in subsequent markings is known as Token Game (Figure 2.3).

Figure 2.3: A simple Petri Net, showing an initial state or markingWo and a final state
W f after one firing between Places and Transitions

The concept of timing may be included in PNs. Time may be associated
with Tokens, Transitions, and Places. Transition-timed PN may be achieved
by associating delays in the time between enabling and firing, or the time asso-
ciated to the firing itself. In Place-timed PN, when a token arrives to a Place it
can enable a transition only after a waiting time in the Place has elapsed. Tran-
sition and Place timing PNmay be considered equivalent, since onemodel can
be translated into the other; Transition timed nets may be considered the most
commonly used. PN modeling including timing may be accomplished by as-
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sociating firing delays with each transition, specifying the time that the transi-
tion has to be enabled before it may fire. If the delay is a random distribution
function, such as in Poisson processes, the model is called Stochastic-PN and
is analyzed with Markov processes techniques. If the delays are distributed
in a deterministic fashion, the model is called a Timed-PN. Execution in Petri
nets is nondeterministic, so multiple transitions can be rendered possible at
the same time (any one of which can fire), and none are required to fire (they
fire at will, between time 0 and infinity, or not at all). Since firing is nonde-
terministic, Petri nets are well suited for modeling the concurrent behavior of
distributed systems.

A Petri net is a set:

P = 〈S, T, F,N,M,W〉 (2.1)

... where:
S, is a set of places
T, is a set of transitions
F, is a set of arcs
N, is a set of tokens

The set F is subject to the constraint that no arc may connect two places or
two transitions, F ⊆ (S× T) ∪ (T × S)

M : S → N is an initial marking, where for each place s ∈ S, there are
n ∈ N tokens.

W : F → N+ is a set of arc weights, which assigns to each arc f ∈ F some
n ∈ N+ denoting how many tokens are consumed from a place by a transi-
tion, or howmany tokens are produced by a transition and put into each place.

Othermodels of concurrency, originally designed formessage-passing that
feature hierarchical composition (e.g. the Actor model) build on the rich Petri
Net literature and experience. Nevertheless, there is an ongoing argument
about the complexity and lack of compositionality in the model (the ability to
compose hierarchically contained submodels), which can be a serious limita-
tion of Petri nets because this deficiency limits modularity. In addition, Petri
nets lack the notion of locality because input tokens of a transition disappear
simultaneously, which limits the realism of the model.



2.5 OUR METHODOLOGY RATIONALE 25

On a more formal note, process calculi such as λ or π calculus offer detailed
sets of mathematical formalisms for describing and analyzing properties of
concurrent computational systems. The π calculus [121], for instance, was de-
veloped by Robin Milner specifically as a language for concurrent computa-
tional processes. It is based on a model for the representation and simulation
of communication systems based on concurrent processing. Process calculi
offer a formal, fine-grained model of computation that is well suited for the
description of systems at the microscopic level of interaction.

2.5 Our Methodology Rationale

In this thesis we argue that even though there have been important steps forward
in the field of architectural design and analysis, the new conditions and challenges
created by system-level e-Science require new approaches that build on the state of
the art while addressing current shortcomings.
Towards this end, the methodology used is to start by prototyping a num-

ber of software architectures for biomedical systems intended for experimen-
tal purposes, which provide us with fully working models. We then analyze
the increasingly complex system architectures using a formal model of archi-
tectural analysis, in order to reason about them and understand, e.g., compo-
nent concurrency and architectural invariability. The rationale for using such
model, as elaborated next, is based on the fact that we identify an important
gap in architectural design, where methods that provide a mesoscopic view-
point to system analysis have not been throughly investigated in the literature
of current state of the art.

2.5.1 Addressing The Mesoscopic-level Gap

In the previous section we described a couple of common methods of repre-
sentation when it comes to distributed systems in biomedical informatics: the
Unified Modeling Language and Petri Nets. We discussed how the UML of-
fers an approach to represent macroscopic viewpoints of system design via a
number of diagrammatic constructs, while also being able to delve into com-
ponent details to a certain extent via class diagrams and other programmatic
devices. UML offers good compositionality characteristics, as well as a practi-
cal (though informal) semantics based on object-oriented abstractions. We also
discussed the widely used Petri Net model, an excellent approach to graphical
modelling of microscopic viewpoints of discrete distributed system via, e.g.,
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its strong support for potentially concurrent interaction among components,
since it was originally intended for message-pasing communication systems.
Petri Nets’ popularity is also grounded in the model’s formal semantics.
Nevertheless, one of the pressing problems in the field of biomedical in-

formatics modeling and simulation is precisely the lack of integrative, meso-
scopic level approaches to system design and analysis. Spatial, temporal and
functional scales of new biomedical simulation systems require complex inte-
gration of data and hierarchically composed subsystem components, in or-
der to study system-level problems related to disease. That is, with new
complex system-level initiatives to e-Science (e.g., the Physiome Project [91,
92]), biomedical informatics research spans now across the spectrum, from
molecules and genome to organs, and integrative to whole humans. This sug-
gests the eventual integration of large quantities of distributed data, compo-
nents and other resources, being accessed in a potentially concurrent way, in
scales that researchers could not even consider until recently.
We identify a gap at the level of representation and analysis at the meso-

scopic level of architectural design and analysis. New systems should be able
to represent complex hierarchies of their own subsystems, with componets
that may interact concurrently. These kind of characteristics are not easily rep-
resented in the current state of the art. For instance, while UML offers good
macroscopic compositionality, its informal semantics lack concurrency sup-
port, rendering it not fully endowed for system-level analysis. Petri Nets offer
a better tool for modeling more microscopic characteristics of system design,
though the model’s token game lacks compositionality and locality, hindering
realistic system representation of nonsequential processes. Table 2.1 shows a
high-level comparison between the approaches discussed before.
In this thesis we propose an actor model as amesoscopic approach to system

level design, based on the classical actor model of computation for potentially
concurrent message-passing systems, which we next describe in detail.

2.5.2 The Actor Model

The actor model is a model of computation that resulted from the work of He-
wit et al. [84, 85], where the universal primitives of computation are actors,
which are message-passing entities. The model has been extensively used
as a framework and unit of abstraction for the theoretical understanding of
classic computation systems, where all entities are considered actors, as op-
posed to, e.g., object-oriented models where all entities are considered objects.
Another key difference is that object oriented models are designed to be ex-
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Table 2.1: Approach-level comparison and mesoscopic gap: a mesoscopic level of
analysis, the Actor model, filling and complementing the identified gap between the
macroscopic and microscopic levels of system architecture representation provided by
UML and Petri Nets

UML Actor Model Petri Nets

Macroscopic Mesoscopic Microscopic
based on objects based on message-

pasing
based on message-
pasing

compositionality compositionality no compositional-
ity

informal semantics formal semantics fine-grain formal
semantics

no locality locality no locality
no concurrency concurrency sup-

port
native concurrency
support

ecuted mostly sequentially, whereas actor oriented models are explicitly con-
current. That is, communications between actors may occur asynchronously,
and can be carried out in parallel. Since highly distributed communications
can involve arbitrary and dynamic patterns of interaction, concurrent compu-
tational models seem to offer an interesting approach to the problem.
Actor models were originally introduced in the 1970’s, where the fun-

damental principles were laid out: everything is an actor, actors are oper-
ated upon by sending the messages so that they perform the required op-
eration themselves, and events consist of actors sending and receiving mes-
sages. Multiple actors may execute concurrently, and each actor has a behavior
(program) and a unique address. Actor languages are traditionally extensions
to process calculi, including primitives for actor coordination. For instance,
in one of the best known works in the field, Agha et al., describe actor’s
behaviour using a call-by-value functional language [4], with λ-calculus ab-
stractions to represent the execution behavior when messages are exchanged.
They use primitives such as send(a,v) (for sending messages with receiver a
and contents v), become(b) (for capturing local state change by, e.g., altering
the behaviour of the actor executing to be b), and newadr and initbeh (for ac-
tor creation). They also introduce an analogy between the actor primitives
and reference primitives: newadr is an allocation primitive, initbeh and become
update or alter the actor’s state, and send’s effect depends on the state.
A simple example of actor behaviour in such model, as found in Agha’s
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work, can be expressed as:

b = rec(λy.λx.seq(send(x.M), become(y))) (2.2)

In this algebra an actor b offers an interface for a message from another
actor. Such message M is sent, updating the actor’s state; rec is here used as
a call-by-value combinator. An actual expression to create such an actor and
enact such behavior would look like:

e = letactor{x := newadr()}seq(initbeh(x, b), send(x, a)) (2.3)

Where letactor creates a new actor with initial behaviour b and address x,
where seq is a syntactic expression for sequential composition.
Actor orientation complements and builds on other models such as ob-

ject orientation by emphasizing communications and concurrency between
components. That is, while object interfaces mediate transfer of control, actor
interfaces mediate communication, emphasizing interaction between compo-
nents distinctly from the specification of a component’s behavior. This com-
plementarity with existing technologies fits our requirement of building on
the state of the art. The actor model is commonly used to separate functional-
ity from component interaction, using hierarchy and model refinement to di-
vide a model into nested sub-models, allowing for scalable compositionality
that similar models like Petri Nets lack. Actor interfaces are also very useful
to mediate high-level communication without assuming transfer of control.
We therefore use an actor model for a number of reasons. Actors are re-

ported in the literature as being quite useful to understand system heterogene-
ity via their support for hierarchical composition and localized component
interaction [112]. Such model component interaction is clearly distinguished
from component behaviour [107].
The actor model we propose, like the original model it is based upon, facili-

tates conceptual modeling of Grid architectures by representing themesoscopic
level of architectural representation quite accurately. This is accomplished by
capturing relevant microscopic component details (e.g., offers formal seman-
tics derived from process calculi, clear locality of interaction, and native con-
currency support), while still representing the macroscopic overview of the
system architecture (e.g., supports high-level representation and boundless
compositionality) as shown in Table 2.1. In this way, the architecture descrip-
tion acts as a proxy of the system, with an architecture that may be essen-
tially flat, but represented hierarchically via actor composition and hierarchi-
cal refinement. We next elaborate on the specific actor model developed for
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analysing distributed software architectures.

2.6 Architecture Representation

We next define our mesoscopic representation model for software architec-
tures, in terms of a set of design primitives and hierarchical graphs. This
model provides the basis for our approach to reasoning about the increasingly
complex software architectures used as case studies in this thesis.

2.6.1 Design Primitives

Actors are commonly modeled using visual syntaxes for diagrammatic speci-
fication of system structures, simplifying component deterministic expressive-
ness [108]. In this thesis we extend the Bowers-Ludäscher model for architec-
tural definition [113]. We use the model’s concurrent data modeling or struc-
tural data types for describing the high-level architectural interfaces between
hierarchically-refined actors in distributed Grid systems. We next define a vi-
sual syntax and a language description for interface type expressions.

Visual Syntax

Following the graphical Bowers-Ludäscher actor notation [113], we define a
visual syntax for architectural representation via a set of basic transformations
or design primitives, modifying the original syntax in order to support archi-
tectural primitives, as opposed to the original model’s intended orchestration
semantics. We map define a set of visual basic transformations as shown in
Figure 2.4, and defined as follows:

• A → actor introduction primitive

• D → data connection primitive

• Σ → hierarchy refinement primitive

• Φ → port introduction primitive

It is important to note that Φ are abstract interface definitions. That is, ac-
tual implementation details, which are particularly useful for structured data
typing, are left for developers to refine.
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Figure 2.4: Visual Actor model syntax, showing the basic design primitives and their
fit into architectural design. A number of basic transformations serve to describe the
four main design primitive components of actor introduction, port introduction, data con-
nection, and hierarchy refinement

Interface Language Description

Weuse XML Schema as a language for standard description of structural inter-
face definition, constraining the actor ports and their types. XML Schema is a
markup language for the description of XML document instances. It includes
constraints on the structure and content of documents in a more precise man-
ner than standard syntax constraints in XML, at a high level of abstraction.
We define actors’ interface signatures using the XML Schema description

shown in Figure 2.5. Here, we define a stage root element containing an un-
bounded number of actor elements, which contain an actorType ennumerated
element definition which may take the simple or composite values, and an ac-
torSignature sequence definition. The actorSignature in turn contains the in-
Ports and outPorts sequence definitions, where the actual inPort and outPort
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unbounded elements and their contraints are defined. When an actor is of
type composite, then it may contain an unbounded number of actors, and so on.

Figure 2.5: Actor interface definition XML Schema; an unbounded number of actors
with attributes name and type within a stage contain actorSignature elements, with in-
Ports and outPorts sequences. The interfaces are defined in the inPorts and outPorts,
which contain the actual methods and types to be refined by system developers. Ad-
ditionally, actors may contain an unbounded number of other actors when they are of
composite type

2.6.2 Hierarchical Architecture Graphs

For formal architectural descriptions we use the Bowers-Ludäscher [113] actor
model, originally designed for workflow description. We modify the model
and apply it to the description of distributed and potentially concurrent soft-
ware architectures. We adopt the classic terminology of Actors, Ports, andData
Connections, where Actors contain internal state and procedures that follow
an operational thread or execution path, and communicate with other actors
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sending messages via their ports, through a data connection.

We define an architectural graph:

G = 〈A,D,Σ,Φ〉 (2.4)

where we have:
a set A of actors representing components, and
a setD of data connections connecting actors via data ports

Actors. Actors communicate by passing messages between their ports,
where:

each actor A ∈ A has an associated set ports(A) of data ports
each p ∈ ports(A) is input port or output port;
ports(A) = in(A) ∪ out(A)

Data Connections. Data connections d ∈ D are directed hyper edges that
may specify a multicast-type of behaviour d = 〈O, I〉, connecting:

n output ports O = {o1...on} ⊆ out(A),
with m input ports I = {i1...in} ⊆ in(A)

The architectural graph includes a set of signatures Σ, where i/o signa-
ture ΣA of A = ports (A)

Hierarchy Refinement. Architectural hierarchy refinement can be done by
decomposing a subarchitecture into its composite actors AA, and possibly
specifying subarchitectures AA inside of them.
Nevertheless, the i/o signature of the composite actor (ΣA) should match

the i/o signature of the contained subarchitecture (ΣA). Therefore, if a com-
posite actor AA = 〈A,ΣA〉 has a subarchitecture AA and a set of ports ΣA,
the subarchitecture AA’s signature matches the composite actor’s signature
ΣA = ports (AA). This hierarchical representation with composite actors de-
fines a flat system that is represented in a hierarchical way.

Structural Data Typing. For modeling primitives to be consistent in data-
centric models, structural data typing should be defined. We use an abstract
description, where:
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p ∈ ports(A) may have structural data types
so, if L is a language for standard description (e.g., XML Schema)
s ∈ L is an abstract type expression that describes the messages that p can

accept.

Therefore, if a set of structural constraints Φ associates structural types
from L to ports inA.

This model offers a detailed proxy of the architecture, which we can use
to reason about the system’s components and their potentially concurrent in-
teractions. We decided to leave semantic data typing and associated ontolo-
gies as future work for a number of reasons: as originally defined by Bowers-
Ludäscher, semantics issues are relevant for orchestration concerns and ontol-
ogy building, which are out of the scope of this work. While the relevance
of the use of detailed semantics in order to build architectures is clear, their
use for the representation of architectures and their proxies in order to reason
about their component interaction is not.

2.7 Summary

In this chapter we describe some of the methods commonly used for modeling
software architectures, particularly when issues of concurrency are of concern.
We identify a gap in the state of the art where work on methods for meso-
scopic level of system architecture is not yet complete. We leverage the actor
approach in order to fil such gap, and develop an actor-basedmethodology for
analysis of distributed and potentially concurrent architectural models. This
methodology is aimed at addressing issues related to object, component, and
distributed concurrent systems resulting from recent developments in com-
putational science applied to biomedical research. These developments show
trends for computational simulation taking a prominent place, pushing the
evolution in the scientific method from classical experimental approaches in-
vivo to in-vitro to nowadays progressively more in-silico. We are motivated
by the real and specific problem space of resource access and interoperability,
as well as by the emerging distributed technology base, which complements
recent advances in the state of the art in distributed computing and compu-
tational science.
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In the following chapters we apply our prototyping and analyzingmethod-
ology to a number of increasingly complex case studies, where we focus on
issues ranging from transparent access of distributed radiological data and
PACS interoperability, to distributed simulation and visualization within an
interactive problem solving environment for the study of systolic haemody-
namic flows, to a highly-distributed collaboratory for biomedical decision sup-
port in viral disease treatment. We also explore performance characteriza-
tion of some of the deployed architectures, with new approaches to the use
of methodologies and tools available from both data and computational Grid
viewpoints. This allows us to investigate, in the context of specific biomedical
informatics applications, a number of issues related to support for transport-
level security and authentication, widely distributed data access and storage
capacity, as well as high performance and throughput.
We expect that the process of defining these architectural designs results in

a scalable and reusable approach to distributed architectures for biomedicine.
Such approach should ease the work of scientists who need to execute their
computationally intensive process flows just like they currently do in local
computational and data farms.



3

Distributed Data Access∗

3.1 Introduction

One of the main issues in modern biomedical informatics is the support for
transparent data communications and integration using distributed resources
in order to achive more transparent data access and proccessing. In the case
of standard image-based medical informatics, this is normally based on the
communications approach provided by the Digital Imaging and Communi-
cations for Medicine (DICOM) model. DICOM provides a standard intercon-
nectivity and communications model for access to image and some non-image
information stored within local Picture Archiving and Communications Sys-
tems (PACS) repositories, within the hospital information system or across
the enterprise.

∗The results presented in this chapter formed the basis for the following two papers:

• A. Tirado-Ramos, J. Hu, K.P. Lee, "Information Object Definition-based Unified Modeling
Language Representation of DICOM Structured Reporting: A Case Study of Transcoding
DICOM to XML", Journal of the American Medical Informatics Association, vol. 9, July 2002,
pp. 63-72.

• R. Martinez, J.F. Cook, A. Tirado-Ramos, "Java-CORBA DICOM Adapter Service for
DICOM-compliant Datasets", First Latin American Conference on Biomedical Engineering,
IEEE Engineering in Medicine and Biology Society, November 1998, pp. 621-622.

35
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3.1.1 Problem Statement

Advances in networking technologies push the state of the art in the field:
characteristics such as bandwidth, latency and throughput in high-speed net-
works can make network performance almost comparable to the bandwidth
offered by the internal links of commodity computers. Software architects
have to reflect such technological evolution of the communications fabric in
their designs, graduallymoving frommonolitic software architectures tomore
generic component approaches [117, 151]. The continuous increase in the al-
ready large amounts of digital data produced by modern medical imaging
modalities underlines a number of issues in software architectural design.
For instance, digital modalities that are connected to networked PACS re-

quire support for more scalable and transparent access to patient data, strain-
ing hospital process flows. Furthermore, the use of legacy architectures and
models may hinder scalability and transparency in distributed biomedical
systems and their enterprise-wide interoperability.
We propose that new architectural approaches are needed for the repre-

sentation of abstract layers between biomedical applications, users and the
hardware fabric required across geographical and organizational boundaries.

3.1.2 Chapter Organization

In this chapter we introduce the issues related to the evolution of software
architectures for biomedical informatics, which we address at length in the
context of Grid computing in subsequent chapters. We design and prototype
two representative systems, and apply the modeling and analysis approach
stated in chapter 2. We focus on the issues of enterprise interoperability and
data transfer, where we use state of the art in medical informatics and apply
object oriented and component models for architectural representation. We
also use the actor model of architectural representation in order to identify
high and low level constructs to be used as comparison with more advanced
distributed systems, such as the ones in chapters 4 and 5. We start our anal-
ysis of biomedical informatics architecture by using two medical informatics
case studies. We first analyze a case study where we prototype an Extensible
Markup Language (XML)-based application using object-oriented modeling,
bridging the DICOM relational model to standard object-oriented technolo-
gies. For this, we specifically use the DICOM Structured Reporting relational
model as initial framework. In the second use case, we analyze the architec-
ture of a more complex distributed application. We design and prototype data
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access components for this distance radiology system, using the Common Ob-
ject Request Broker (CORBA) model to access distributed medical image data.
This prototype was deployed as part of a large virtual environment for dis-
tributed access to patient and image information. We finalize this chapter by
presenting a discussion and summary of our results.

3.2 DICOM Communication

The American College of Radiology (ACR) and the National Electrical Manu-
facturers Association (NEMA) created a joint committee in 1983 to address the
problem of developing a standard interface between medical imaging equip-
ment, its associated information, and user applications. The DICOM model
aims at interconnecting devices on standard networks, and provides a means
by which users of imaging equipment may determine whether two devices
claiming conformance are able to exchange information. The model was in-
tended to facilitate communication in networked multi-vendor environments,
connecting PACS to Hospital Information Systems (HIS) and Radiology Infor-
mation Systems (RIS) within hospital data flows, as shown in Figure 3.1.
DICOM was designed to rely on relational Entity-Relationship technology.

Its model and tables of attributes are called Information Object Definitions
(IOD), and define the data structures used in DICOM that describe Infor-
mation Objects (IO) such as patients and images involved in radiology op-
erations. The basic entity-relationship diagram for a Radiology Department
serves as the basis for most of the additional models, including both the data
items required in a given scenario and how these items interact and are re-
lated to each other.
The DICOM communications model defines Services that use constructs

called Operators and Notifications. Sets of generic Operations and Notifica-
tions are called DICOM Message Service Elements (DIMSE), which are the
communication message services. The combination of an IO and a Service is
called a Service-Object Pair (SOP), which is the atomic unit of DICOM func-
tionality †. When an Information Object is used with a set of services, a SOP
Class is defined (Figure 3.2).
In DICOM, a device may serve as a Service Class User (SCU), or as a

Service Class Provider (SCP), following the client/server paradigm. Service
Classes are basically built up from a set of operation primitives operating on
IODs. The Storage Service class provides the basic support for transfer of
†Optional DICOM SOP classes enable annotation, image overlays, and enhanced reporting.
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Figure 3.1: Data flow in the DICOMmodel, from work stations to short and long term
archives, printers and the hospital’s information systems

Figure 3.2: DICOM services and "object" definitions result in Service-Object Pair
classes, an object-based construct which is the atomic unit of DICOM functionality
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images between DICOM applications. To retrieve images from DICOM appli-
cations, the Query/Retrieve Service class supports basic operations to access
and move images based on simple search criteria, such as get all of the images
of a particular patient. The Patient, Study, and Results Management Service
classes were also designed to support communication between DICOM com-
pliant PACS and a separate HIS or RIS.

3.3 Improving Interoperability

We first discuss a simple data-centric example, where data communications
within a PACS, based on the DICOM SR standard, is extended for enterprise-
wide communication using object-orientation.
Image communications models such as DICOM are commonly used to

integrate and facilitate communication among image-acquisition, waveform
(non-image digital data related to an examination), archiving, and informa-
tion system components. For applications to handle information fromDICOM
objects, DICOM tools are required for decoding and encoding the messages.
Systems in departments other than these often do not support DICOM but
use other communication protocols.
The goal of an integrated electronic medical record can be facilitated by

object-oriented representations and Web-based interfaces. Common scenar-
ios include the retrieval by a radiologist of images stored in a PACS and their
display for diagnostic interpretation or post-processing. At the workstation,
the radiologist can then create structured reports that can be mapped from
DICOM to open technologies such as XML. These XML-based reports can of-
fer enterprise access to the key information and related images via a mobile
device or a light-weight viewing terminal. In this way vital information can
be passed from system to system, and made available as needed at the point
of care, with the aggregated value of hierarchically structured information as
opposed to natural language format.
Clinicians often prefer an outline report with hierarchic standardized vo-

cabularies and structures over a natural language format. The current usage
of standard formats for this purpose is minimal at best, with most of the ef-
fort going instead into voice recognition and capture of narrative reports. The
DICOM Structured Reporting (DICOM SR) specification is intended to ad-
dress the structuring of captured data, supporting and structuring conven-
tional free-text reports commonly used in diagnosis. It provides the capability
to structure information to enhance the precision, clarity, and value of clinical
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documents. The DICOM SR specification supports a semantically rich repre-
sentation of image andwaveform content, that enables experts to share textual
and coded data linked to images and waveforms, as well as knowledge about
non-linguistic evidence [29]. The purpose of DICOM SR is to improve the ex-
pressiveness, precision, and comparability of documentation of diagnostic im-
ages and waveforms, so that critical features can be denoted unambiguously
by the observer and retrieved selectively by reviewers. This way, findings can
be expressed as textual or coded information, numeric measurement values,
and references to spatial or temporal regions of interest.
We design an object-oriented model to explore the representation of the

relational DICOM SR Information Object Definition (IOD) hierarchy, macro
representation, its characteristics of recursion, and some of its constraints. We
use a full object-oriented approach within the boundaries of current object-
oriented modeling technologies [34], and prototype this architecture using
XML technologies. We then move on to the analysis and prototype of com-
ponents for a more complex, fully distributed system, where we apply the
lessons learned and use an actor model for architectural representation.

3.3.1 DICOM SR Modeling

Some attempts have been made to model the process of creating structured re-
ports by using explicitly stated criteria. Some of these attempts have resulted
in concept models that support structured data entry and image retrieval, pro-
viding a model for analyzing sets of natural- language reports [23, 30]. This is
precisely the focus in DICOM SR. For developers who are not DICOM-literate,
it is relatively difficult to understand its information model. Information ob-
ject definitions in DICOM are based on entity-relationship concepts. Inter-
facing between such relational technologies and distributed, object-oriented
applications can present a significant semantic and language barrier for ap-
plication developers and system architects. We approach this problem via the
Unified Modeling Language (UML). UML offers a way for specifying, visu-
alizing, constructing, and documenting the artifacts of software systems, as
discussed in chapter 2.
We follow the conventional UML notation and syntax, using the basic

principles of object-orientation to model system structure and behavior. We
define classes and class responsibilities with object-oriented analysis and de-
sign concepts such as objects, classes, stereotypes, and relationships. We then
prototype it using XML. XML eases access to imaging, demographics, and
waveform data using open component technology, addressing interoperabil-
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ity and system integration issues. DICOM SR is intended to support the inter-
change of expressive compound reports in which the critical features shown
by images and waveforms can be unambiguously annotated by the observer,
indexed, and retrieved selectively by subsequent reviewers. DICOM IODs
define the data structures that describe information objects, or logical rep-
resentations of real world objects, such as patients and images involved in
radiology operations.
DICOM SR introduces DICOM Services and IODs used for the transmis-

sion and storage of structured reports. DICOM IODs are representations of
real world entities (e.g., images and reports) represented in the specification
as templates of attributes. The DICOM SR (SOP) definitions allow users to
link text and other data to particular images and waveforms and to store the
coordinates of findings so that they can see exactly what is being described
in a report. These DICOM SR IODs and corresponding DICOM SR Storage
SOP Classes enable the query and retrieval of DICOM SR SOP Instances as
Instance-level entities, following the DICOM Query/Retrieve model. Infor-
mation object definition modules contain attributes, which in turn may refer
to other attributes or to attribute groupings called Macros. The modeling de-
cisions andmapping rules for mapping the different DICOM SR elements into
UML and XML data type definitions start with the SRDocument IOD the root
(Figure 3.3).
Furthermore, DICOM SR provides particular recursion characteristics, as

present in the SR Document Content module via the Document Relationship
Macro. The issue of recursion, from a developer’s viewpoint, is a key prop-
erty that allows multiple containment within structured reports, an impor-
tant property in numeric-intensive reporting such as in ultrasound applica-
tions. The DICOM SR specification reflects this complex property by the cross-
referencing of DICOM Macros; this representation makes it hard for those
who are not DICOM-literate to understand this property. We approached this
problem by modeling the reference relationship to Content Item, as well as
its relationship by containment, to reflect this reciprocal recursion. This is a
key difference between the various SR SOP Classes as defined in the specifi-
cation (Figure 3.4).
Additional constraints‡ to the UML model may be represented by new

modeling technologies and artifacts, and are out of the scope of this work.

‡For instance, DICOM Type 1 and 2 attributes are mapped as Required; Type 3 attributes are
mapped as Optional; for Type 1C and 2C attributes, which are required under certain conditions,
a number of conditionality-based rules are applied.
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Figure 3.3: An object-oriented class diagram, where the basic DICOM SRDocument-
General links to CodeSequence via the ReferencedRequest class

3.3.2 XML-based Prototype

Early attempts to represent medical information contained in structured re-
ports focused on generalized and ad-hoc languages for representation [95].
Our approach is based on the detailed representation of structured reports us-
ing an open standard, the XML. We generate XML type descriptions based
on this DICOM SR UML model using a number of rules and modeling de-
cisions, e.g.:

• UML classes are mapped to the XML data type Elements,
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Figure 3.4: Document Relationship Macro, showing DICOM SR’s recursive relation-
ship by containment within the SRDocumentContent class; class SRDocumentCon-
tent has a "use" relationship with class DocumentRelationship, which itself defines
attributes such as document_relationship
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• UML class attributes are mapped to XML data type Elements,

• UML Association and Uses relationships are mapped to the XML data
type Elements as relationships by containment,

• each atomic attribute is mapped to an element, which contains five at-
tributes: codingScheme, codeId, type, value and label.

We generate the actual XML data type representation bymapping the class
structure to the data type framework, taking the model as a reference. This
definition provides the basis for an XML translator engine based on Extensi-
ble Stylesheet Language Transformations (XSLt) [99]. That is, an XSLt engine
may take as input patient demographics and reports in a native or XML for-
mat and DICOM SR XSL transformations. The engine then generates an XML
output document that was compliant with the DICOM SR data type discussed
previously. Finally, a second translationmodulemay convert DICOMSRXML
documents into DICOM standard binary files when required.

3.3.3 Towards Enterprise Interoperability

In this enterprise data transfer case study we modeled and prototyped an
object-oriented component representation of parts of the relational DICOM
specification. This approach, using the UML modeling approach and XML-
based open technologies to interface image and non-image digital patient in-
formation, enables interoperable data transfer to various clinical specialties as
well as leverages Web-aware applications and technologies, within the enter-
prise. This component-based approach proves not only quite helpful in under-
standing issues related to migrating frommonolitic relational models for data
access to open, scaleable object-oriented enterprise data access using a struc-
tured reporting model, but also provides a context for further investigation
on distributed DICOM and other legacy data. Next, we expand our analysis
with an example of a component service within a software architecture for
distributed teleradiology applications.

3.4 Components for Data Access

In this second case study, we move from simple data access within the en-
terprise to distributed communications extending the DICOM communica-
tions model. For this case, we rely on the CORBA communications model,
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where DICOM relational components are extended by a distributed compo-
nent model.
Healthcare provision has experienced a revolutionary transformation in

recent years due to the application of new telecommunication technologies
to the transmission of medical information. Distributed systems for hospitals
and rural clinics now make possible to handle patient information between
remote terminals in multimedia fashion, with audio, text, images, and full-
motion video being transferred from one site to another.
Medical records are not necessary normally online. The rapid develop-

ment of some of the most important distributed applications demands now a
wider approach to these kinds of medical information services. For instance,
in distributed biomedicine applications, technologies such as PACS are now
frequently linked to online medical records systems such as HIS and RIS. In
this way, physicians or technologists may use PACS to extract patient data and
communicate with the HIS and RIS to handle medical imaging information.
Clinical specialties such as radiology and cardiology continue to be a strong

focus of distributed medical informatics research. We next analyze an effort
on component approaches for distributed teleradiology applications within a
large distributed computing environment, a CORBA-based virtual radiology
environment. The design of the storage and archiving systems in this virtual
environment is based on a distributed computing environment using a set of
open middleware protocols. Within this virtual environment, a seamless radi-
ology department is virtualized, where patient cases could be acquired at any
medical treatment facility and sent to any other that had available radiology
reading resources. For this case, the lack of object-oriented support in DI-
COM limits the interoperability of the distributed DICOM gateways with dis-
tributed objects present in the network. Also, DICOM interfaces are generally
tightly-coupled to specific programming languages and operating systems.
The integration of legacy data sets based on the DICOM relational model

into the distributed environment is not trivial. We next design and prototype a
component service within the system architecture that extends DICOM basic
functionalities and provides seamless access to clinical datasets by users in
regards to operating system, distributed platform, and legacy database access.

3.4.1 Actor Analysis

We present an actor-based representation of the main architectural compo-
nents for this use case, following the actor model presented in chapter 2.3.
With this approach we aim to emphasize communications and concurrency
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between components. We also aim at separating functionality from compo-
nent interaction, and comparing the architecural components of increasingly
complex distributed biomedical informatics case studies shown in chapters 4
and 5.

Actor-based Grid Architecture

In the actor design, we identify three levels of abstractions for component rep-
resentation, and start our analysis at the first level. We identify as main com-
ponents a set of four actors, client, server, object broker and interface, as shown
in Figure 3.5, where:

• client offers an interface for external input, in this case from the system’s
user, and two abstract output interfaces: one to initialize object broker and
one to initiate interaction with interface,

• the composite interface offers two, possibly concurrent, input interfaces:
one from client, and one from the composite server actor to get data pre-
viously requested. Interface also provides an output interface to server
actor, by which it may request data,

• object broker is shown as providing one input interface via which it can be
initialized by client, and one output interface to perform CORBA object
bindings from the broker’s interface repository.

Figure 3.5: First level of actor containment, showing the interactions between client,
server, object broker and interface

In the second level of containment we find the internals of the first level’s
composite interface and server, as shown in Figure 3.6. Interface is shown as
composed by four components, ui, session manager, patientInfo manager and
retriever, where:
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Figure 3.6: Second level of containment, detailing the interface and server composites

• ui represents the user interface, and provides both external interfaces to
the upper level, as well as abstract output interfaces to session manager
for accessing current status of patient study, patientInfo manager for get-
ting patient’s demographics and imagemetadata, and retriever for image
data transfer,

• the other three actors all offer output interfaces for data provision to the
upper level server.

The server composite actor is shown as containing actors service provider,
object broker, object adaptor and object creator, where:
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• the service provider actor provides three input interfaces, two of them to
access it from the upper level interface and object broker, and one from the
object broker for routing object requests and responses,

• object broker and object adaptor are initialized by service provider via their
input ports, while the object adaptor offers an output interface into the
composite object creator for object activation,

• object creator offers input interfaces to service provider for object creation,
and an output interface to the upper level interface for object transfer

Actor Signatures

The architecture’s actor port signatures are defined in XML, based on the XML
Schema actor interface definition described in chapter 2, for matching of com-
posite actor signatures and basic structural data typing between actor ports.
A code fragment of this architecture’s actor signatures is shown in Figure 3.7.
There, a stage contains actors client, server, object broker and interface. Further-
more, it shows the second level composite interface internals, containing sim-
ple actors session manager, patientInfo manager, retriever and ui. It also shows
inPort signature matching between interface and ui.
This approach is based on eq. 2.6, which states the use of a language L

for standard signature description, with s ∈ L describing the messages that a
given port can accept. In this case, the language used is defined by the XML
Schema defined in Figure 2.3.
That is, we use this actor model of computation for the representation of

concurrent behaviour in order to identify patterns of distributed component
behaviour and how such components evolve and interact across levels of com-
plexity, compared with the use cases in chapters 4 and 5, and discussed in the
thesis conclusions.

3.4.2 CORBA-based Prototype

Large distributed environments such as the virtual environment in this case
study present special requirements. Enhanced security, for instance, may in-
troduce firewalls, gatekeepers, and other intermediate gateways in the path
of DICOM file transmission. In DICOM, communication between entities is
commonly considered on a direct association basis. Conventional gatekeep-
ers and gateways usually allow access by Telnet, the File Transfer Protocol
(FTP), or other applications that may not be able to interpret the contents of
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Figure 3.7: Actor port definitions: code fragment of the actor’s port signatures for the
distributed medical access application actor architecture described in Figures 3.11-3.12,
showing higher level interfacematching lower level ui input ports

submitted data nor allow proper synchronization. The need for a DICOM-
compliant data access service that wraps the medical information into object
entities was identified.
The use of CORBA-based distributed object environment technologies of-

fers several benefits in this context. For instance, interfacing to the legacy
databases by developing CORBAwrappers allows access to the database data
structures without disturbing the existing databases.
The client of a CORBA object has an object reference to issue method re-

quests. If the server object is remote, the object reference points to a stub
function, which uses the Object Request Broker (ORB) logical bus. The stub
code uses the ORB to identify the machine that runs the server object and asks
that machine’s ORB for a connection to the object’s server. When the stub
code has the connection, it sends the object reference and parameters to the
skeleton code linked to the destination object’s implementation. The client
has no knowledge of the CORBA object’s location, implementation details,
nor which ORB is used to access the object. Different ORBs communicate via
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the Internet Inter ORB Protocol (IIOP) [132] or the General Inter ORB Protocol
(GIOP) [55]. CORBA allows the connection among the distributed objects and
their integration with the rest of the distributed environment. The medium
that CORBA uses to perform this integration is the Interface Definition Lan-
guage (IDL), which describes interfaces between distributed components and
their bindings.
For this distributed computing use case we design and prototype a service

based on the CORBA model in order to wrap legacy DICOM data and related
information. Our prototype architecture provides seamless access to medi-
cal images and related information via an interface to some DICOM services,
such as the Query and Retrieve DICOM image-oriented Service Classes. The
service offers access to clinical images and related information based upon
patient and study identifiers, with a Client service that queries Server ser-
vices connected to a commercial ORB. The uncompressed, DICOM-compliant
datasets arewrapped and transferred through the network via both pure CORBA
objects, as well as Java-based sockets, using the stubs and skeletons produced
by the IDL specification implementation. This offers an interface to the Re-
trieve Service Class. A Store Service Class interface is available from a free-
ware DICOM image viewer application to store the clinical information in
formats which are compatible with more widespread image standards and
office type computing equipment, such as Tagged Image File Format (TIFF)
or Graphics Interchange Format (GIF). The datasets are packaged as binary
components that remote viewing workstations interacting with the roles of as
DICOM Service Class User (SCU) or Service Class Provider (SCP) may access
transparently via method invocations (Figure 3.8).

3.4.3 Experiment Results and Conclusions

In our implementation the server is designed to initialize the ORB and the
Basic Object Adaptor (BOA), create the object implementations and activate
them, and wait for incoming messages. Socket and stream objects are used to
transfer the requested image file. The client application is designed to get the
session status information, patient demographics and image data, wrapped
as CORBA objects.
The program initializes the ORB, binds to the object implementations, queries

the needed information, displays it, and retrieves the data files. In this archi-
tecture, the ORB is in charge of the requests to the server that implements the
requested objects and returns the results to the client. Access to information
about the patient, study hierarchy, and series is achieved by offering a trans-
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Figure 3.8: CORBA-based access service, showing the session status, patient informa-
tion, and data transfer interfaces. The application communicates with the distributed
object that is performing the operation; the data is passed from the client to the server
and is associated with a particular operation on a particular object, using clearly de-
fined inteface definitions, data is then returned to the client

parent interface to the Query Service Class. The DICOM-compliant datasets
are wrapped and transferred through the network via both pure CORBA ob-
jects and an interface to the Retrieve Service Class.
We prototyped a basic working data access component within the virtual

environment in order to evaluate various aspects of the application’s archi-
tecture. For instance, during our data transfer experiments we found similar
performance in terms of time delay in the inquiry and transmission processes
when comparing the transmission of images and text files by CORBA objects
and Java sockets, as shown in Figure 3.9. Here, the transfer of digital im-
ages and diagnosis information via pure CORBA objects proved faster than
in the case of sockets, both while creating new objects and with existing ones.
The experimental environment was set up in a shared 100Mb Ethernet, with a
3COMdual speed hub. We used SUNMicrosystems ULTRA1/3Dcreator with
256 MBytes RAM running SOLARIS 2.5.1, 200 MHz Pentium PCs with MMX
and 96 MBytes RAM running under Windows NT 4.0 ServerPack3.
We designed and implemented a component-based service that extends

basic DICOM functionality with component and object oriented transparency
and scalability, and showed that the added overhead of the implementation
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(a) Transfer times in seconds, using CORBA Objects and Java
Sockets

(b) Transfer times in seconds, using pure CORBA Objects

Figure 3.9: Data transfer experiment results, showing average image transfer time,
using a) hybrid and b) pure CORBA objects; we found similar performance, in terms of
time delay in the inquiry/transmission processes, while comparing the transmission
of images and text files by both communication paradigms. Contrary to what was
expected, the transfer of images and diagnosis information via pure CORBA objects
has proved not only completely seamless, but also faster than in the case of CORBA-
sockets

is minimal. A number of issues still need to be fully addressed. For instance,
the use of virtualized storage repositories distributed across organizational
boundaries, not tied to specific technologies or interface implementations is
quite relevant. These kinds of virtualized resources can be based upon com-
plex hierarchies, with records containing references to loosely coupled repos-
itories, and may not be trivial to access via, e.g., CORBA bindings. Also, the
fact that multiple users may access a limited number of reliable servers con-
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currently can greatly affect resource reliability.

3.5 Summary

In this chapter we design, prototype, and anayze two increasingly complex
case studies: a UML model of relational DICOM-based data transfer, and a
CORBA-based component extension of DICOM services for large scale data
sharing. These case studies illustrate previous advances in extending the func-
tionality of distributed biomedical informatics applications for image-based
data access and interoperability (Table 3.1). We show that distributed com-
puting technologies such as CORBA and XML can be used to extend software
architectures based on legacy models, such as the relational DICOM model,
without heavy loss of performance. We model, implement and deploy these
systems using an actor representation to provide a clear hierarchical represen-
tation of the system, with component hierarchy and abstract interface map-
ping and matching. Later in chapter 6 of this thesis we use this analysis to
compare base actor components with increasingly the more complex proto-
type implementations found in chapter 4 and 5.

Table 3.1: Extending the standard DICOM information model with object models (us-
ing UML) and component implementation (using XML and CORBA), which enhanced
scalability, transparency for loosely-coupled data access across distributed networks

State of the art Contribution

DICOM-based distributed data ac-
cess

Component and Object-based dis-
tributed data access

DICOM XML, CORBA
Local PACS network connectiv-
ity

Distributed connectivity with
resource transparency

Relational model Component-based model
Tightly-coupled implementa-
tion

Transparent method invocation

Monolitic software architecture Object-oriented software archi-
tecture

Virtual environment Scalable virtual environment
with support for legacy data

Low latency for tightl-coupled
store and forward

Low latency for tightl-coupled
store and forward
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Interactive Grids∗

4.1 Introduction

The biomedical informatics field is currently moving towards the intensive
use and support for more complex data types, user and simulation-centered
new requirements for analysis, collaboration and interactivity, while build-

∗The results presented in this chapter formed the basis for the following four papers:

• A. Tirado-Ramos, P.M.A. Sloot, A.G. Hoekstra, M. Bubak, "An Integrative Approach to
High-Performance Biomedical Problem Solving Environments on the Grid", Parallel Com-
puting, special issue on High-Performance Parallel Bio-computing, vol. 30, 2004, pp. 1037-
1055.

• A. Tirado-Ramos, G. Tsouloupas, M.D. Dikaiakos, P.M.A. Sloot, "Grid Resource Selection
by Application Benchmarking: a Computational Haemodynamics Case Study", Interna-
tional Conference of Computational Science 2005, Atlanta, USA, May, 2005, series Lecture
Notes in Computer Science, vol. 3514, Springer-Verlag, pp. 534-543.

• A. Tirado-Ramos, D.J. Groen, P.M.A. Sloot, "On-line Application Performance Monitoring
of Blood Flow Simulation in Computational Grid Architectures", 18th IEEE Symposium on
Computer-Based Medical Systems, special track Grids for Biomedicine and Bioinformatics,
Trinity College Dublin, Ireland, June 23-24, 2005, pp. 511-516.

• A. Tirado-Ramos, J.M. Ragas, D.P. Shamonin, H. Rosmanith, D. Kranzlmueller, "Integra-
tion of Blood Flow Visualization on the Grid: the FlowFish/GVKApproach", 2nd European
AcrossGrids Conference, Nicosia, Cyprus, January 28-30, 2004, series Lecture Notes in Com-
puter Science, vol. 3165, Springer-Verlag, pp. 77-79.
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ing on previous research and state of the art. One of the most prominent
and relevant developments in distributed system architecture research is the
Grid Computing model. In the next chapter we analyze in depth a case study
of Grid architectures for collaborative biomedical environments that require
open distributed services and tools for users requiring large scale, interactive
biomedical simulation systems.
Grid technology offers a unified means of access to different and distant

computational and data resources. Connectivity between distant locations, in-
teroperability between different kinds of system architectures, and high levels
of computational performance are some of the most promising characteristics
that Grids offer to complex, simulation-centric biomedical applications.
In this chapter we discuss a novel architecture for interactive biomedi-

cal applications running on a Grid, focusing on simulation-centric issues on
production-type Grid infrastructures. We begin by defining the context, a
problem-solving environment for blood flow simulation.

4.1.1 Problem Statement

Cardiovascular disease is a leading cause of death in the developed world.
For instance, about every 30 seconds someone in the United States suffers a
coronary event [64]. Vascular diseases affect arteries and veins, with vascu-
lar disorders generally falling into two categories: aneurisms and stenoses.
An aneurismal disease is balloon-like swelling in the artery walls. Stenosis
is a narrowing or blockage of the artery. The purpose of vascular reconstruc-
tion is to redirect and increase blood flow or repair a weakened or aneurismal
artery if necessary.
The best treatment is not always obvious, though, because of the complex-

ity of the vascular disease of a patient and sometimes of other diseases that
the patient may have. An interactive application in which patient-specific sit-
uations and several treatments can be simulated and tested in near real time
can provide useful clues for surgeons and assist students in understanding
the complexity of the treatment.

4.1.2 Chapter Organization

In this chapter we define the main architectural requirements for a Grid-based
problem solving environment, prototype a representative system, and ana-
lyze the system’s behaviour. We use the actor-based approach described in
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chapter 2 to analyze component behaviour of the implemented system, and fi-
nalize by describing a typical use case scenario using the prototype. We then
use this prototype for further investigations on performance monitoring and
application-level benchmarking for resource selection, as well as distributed
visualization. To this end, we port the prototype to an interactive problem
solving environment for computer simulation of pre-operative planning of
vascular reconstruction developed by the University of Amsterdam [26]. For
the experimental setup, highly distributed computational, storage and Grid
service resources are used to access medical image repositories. We use the
European CrossGrid framework and testbed; this allows us to build on avail-
able achievements from other European Grid projects such as European Data-
Grid and the Large hadron collider Computing Grid (LCG) [105].

4.2 Simulation-based Biomedicine

Even though digital technologies have noticeably improved physicians’ work-
flows, the verification of operation plans can be one of the most complicated
tasks in the process (Figure 4.1). There are several imaging techniques that
can be used to detect vascular disorders. For instance, three-dimensional (3D)
data acquired by Computed Tomography orMagnetic Resonance Imaging can
be converted into a set of two-dimensional (2D) slices that can be displayed
and evaluated from various perspectives and at different levels. Magnetic
Resonance Angiography is a technique for imaging blood vessels. This tech-
nique is expensive, though popular among specialists working in cardiovas-
cular diseases because of its ability to non-invasively visualize the disease.
We use the Virtual Radiology Explorer (VRE) application, which puts a

user at the center of an experimental cycle controlled by a computer, and al-
lows him to apply his expertise in-silico to find better solutions for treatment
of vascular diseases. The aim of the VRE is to provide end users with an intu-
itive virtual simulated environment to access medical image data, visualize it,
and explore patient vascular condition. Naturally, since this kind of medical
image processing is usually a complicated and resource intensive task, addi-
tional computational resources are needed. Furthermore, the VRE supports
smart-agent based interaction, used for real-time simulation [163].
The VRE contains an efficient parallel computational hemodynamics solver

that computes pressure, velocities, and shear stresses during a full systolic
period. The simulator is based on the Lattice-Boltzmann method (LBM), a
mesoscopic approach for simulating fluid flow based on the kinetic Boltz-
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Figure 4.1: Simplified task trajectory of vascular diagnosis and treatment; digital tech-
nologies now allow better workflows, like not having to go back to radiography to
develop film, the ability to produce multiple originals instead of second films of ques-
tionable quality, and so forth

mann equation [147]. In order to convert the medical scans into LBM meshes,
the raw medical data is first segmented so that only the arterial structures
of interest remain in the data set. The segmented data set is then converted
into a mesh that can be used by the LBM solver; boundary nodes, inlet and
outlet nodes are added to the Grid using a variety of image processing tech-
niques. The simulator generates the patient blood flow parameters using Grid
resources. In order to allow for parallel execution, the simulation volume is
divided into several sub-volumes, and each sub-volume is processed concur-
rently. For visualization the VRE uses a semi-immersive wall as a projection
environment [26], in addition to a virtual reality environment where the pa-
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tient’s data obtained from the imaging modality is visualized as a 3D stereo-
scopic image, together with the graphical interpretation of the simulation re-
sults [24]. A user can then manipulate the 3D images of arteries, patient’s
body and blood flow structures in virtual reality, an environment where users
interact freely in a 3D space with entities within it. The working prototype of
the VRE is provided with a multi-modal interface described in [164].

4.3 Architectural Requirements

Scalability and seamless resource sharing are at the heart of Grid-based ar-
chitectural design. To this end, we base the requirements on a simulation-
centric interactive biomedical application, and the facilities offered by current
production-level Grid infrastructure and services. We next elaborate on the
main architectural requirements related to the use and support for virtual or-
ganizations, service orientation and infrastructure interoperability.

4.3.1 Virtual Organizations

The central concept in Grid computing is the idea of Virtual Organizations
(VOs). VOs are multiple trust domains, where interaction is based on mutual
authentication via federated domains supported by their respective security
mechanisms. Trust in the VOs is commonly established via a Public Key In-
frastructure (PKI). Every entity in the system is issued a "certificate" that links
an identifier (the persons name, or a DNS name) to a piece of unique crypto-
graphic data (an RSA keypair, for instance). These certificates usually have a
limited lifetime when stored in a file, or are carried on hardware tokens like
smart-cards and USB keys. In practice this usually requires the use of asym-
metric cryptography technology, which currently means a Public Key Infras-
tructure (PKI), such as the one provided by the Globus Toolkit’s Grid Security
Infrstructure (GSI). Every entity in the system is issued with a "certificate" as
token, which links an identifier to a piece of unique cryptographic data.
GSI takes care of themapping of credentials, via temporary proxies or gate-

ways. A set of keys is normally used as tokens by Grid users; a private key that
is kept secret and a public key that is made publicly available: data which has
been encrypted with the public key can only be decrypted with the private
key, and vice versa. Policy definition, though, is left to the local owner’s trust
policy of the resource to be accessed, which should provide the means for sin-
gle authentication and delegation. It is important to note that GSI decisions
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are made at the local level, where a periodically updated LDAP-based direc-
tory service manages VO users, in accordance with local security policy.
VOs support Grid middleware, the Grid software that links applications

and layers in the Grid architectural model. A number of middleware im-
plementations are currently available, of which Globus [68], Cactus [7], Le-
gion [79] and Unicore [65] are the most mature. In this thesis we use the
Globus core middleware since it is the most suitable tool for our approach
due to its open source nature, service orientation, loosely-coupled transport-
level data transfer. The Globus Alliance is a community of organizations and
individuals developing the technologies behind the popular Globus Toolkit,
an open source software toolkit used for building Grid systems and appli-
cations. The toolkit has evolved from its standard version 2, enhanced by
multiple projects all over the world such as the European Data Grid (EDG)
and the Large Haedron Collider Computing Grid (LCG), to the present web
services-oriented version 4, still under development.

4.3.2 Service Orientation

The recent Open Grid Services Architecture (OGSA) [69] extends the Web Ser-
vices terminology to include Grid concepts, and to manage the creation and
termination of resources as services. Its main focus is on the definition of ab-
stract interfaces that allow services to cooperate. Grid Services, as defined by
OGSA, integrate Grid technologies from Globus toolkits with Web Services
mechanisms to construct a Grid-based distributed framework. That is, a Grid
Service instance is a potentially transient service that conforms to a set of con-
ventions, expressed as Web service description interfaces, extensions, and be-
haviors. Grid Services provide controlled management of the distributed and
often long-lived state that is commonly required in sophisticated distributed
applications.
The release of the Globus Toolkit 4 (GT4) provides a simple approach to

implementing OGSA. The GT4 is currently being deployed among new Grid
development projects, and is expected to become a de-facto standard for Grid
services. Moremature frameworks such as the CERN’s LargeHadron Collider
Computing Grid (LCG) [105] have been successfully deployed by production-
type Grid infrastuctures like the European CrossGrid project [43], providing
scientists with a production testbed that is maintained continuously. Other
toolkits such as the Common Component Architecture toolkit (CCAT) [109],
which aims to create a standard component architecture for high performance
computing, currently use the Globus toolkit as their base foundation.
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4.3.3 Interoperability

High-performance Grid distributed computing continues to evolve and to be-
come a standard tool for data access and computational job submission in
scientific organizations. Virtual scientific communities and organizations are
currently being created and maintained which support large, distributed and
diverse information sources. Access to such resources is inherently complex,
and is aggravated by structural heterogeinity of both the resources and the
software infrastructures that support them.
In the case of biomedical applications data are usually available in hetero-

geneous formats and from various legacy sources, and computational job sub-
mission is often supported by infrastructure-specific frameworks that may be
required to intercommunicate; as Rambadt et al. [131] state: "Different (Grid)
projects focus on different aspects and it is only natural to combine them".
Wide-area access to biomedical information and computation usually requires
higher degrees of interoperability. Currently available Grid technology sup-
ports data access and computational job sumission within specific toolkits,
though the diverse biomedical informatics tools that generate and consume
data rarely come from within a single source or project [45], requiring re-
source and infrastructure interoperability in order to access resources seam-
lessly across Grid virtual organizations. A. Ouksel et al. [125] differentiate
four types of interoperability: semantic, syntactic, system, and structural. In
Grid computing, while there are a number of efforts currently at work in the
fields of semantic [36,77], syntactic [89] and system [65] interoperability, there
is still much work to do into the issues related to structural interoperability
(e.g., seamless access to a set of shared infrastructure services).

4.4 System Architecture

Wenext discuss an architectural approach, mainly as appliedwithin the frame-
work offered by the European CrossGrid Project [153], a production Grid
testbed with resources distributed across 16 European sites and production
services for interactive computation.

4.4.1 Grid Infrastructure

The European CrossGrid testbed provided a production level infrastructure
built for the support of interactive e-Science. It contained sites ranging from
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Figure 4.2: The CrossGrid testbed: a distributed high-performance computational net-
work with clusters offering computational resurces, Grid services and tools across Eu-
rope.

relatively small computing facilities in universities to large research comput-
ing centers, offering an ideal mixture to test the possibilities of an experi-
mental Grid framework (Figure 4.2). National research networks and the
high-performance European network, Geant [76], assured interconnectivity
between all sites. The network included a local step, typically inside a re-
search center or university via Fast or Gigabit Ethernet, a jump via a national
network provider at speeds that ranged from 34 Mbits/s to 622 Mbits/s or
even Gigabit, and a link to the Geant European network at 155 Mbits/s to
2.5 Gbits/s. The CrossGrid team focused on the development of Grid mid-
dleware components, tools and applications with a special focus on parallel
and interactive applications. The added value of this project, therefore, con-
sisted in extension of the Grid to interactive applications. Interaction, in this
context, refers to the presence of a human in a processing loop, and a require-
ment for near real-time response from the computer system. The CrossGrid
testbed extended the European Data Grid (EDG) experience on testbed setup



4.4 SYSTEM ARCHITECTURE 63

Figure 4.3: The CrossGrid testbed: layered architectural view, with local resources at
the bottom fabric layer, a set of common Grid services and middleware from Globus,
DataGrid and CrossGrid, application development support for cross-site job submis-
sion, and a set of interactive applications such as the biomedical VRE, from M. Bubak,
M. Malawski, K. Zajac, "The CrossGrid architecture: Applications, tools, and Grid ser-
vices", International Conference on Computational Science (ICCS), Vol. 2657/2003, pp. 207-
213

and Globus middleware distributions (Fig 4.3).
The CrossGrid testbed architecture and minimum hardware requirements

were modeled after the LCG2 specification [105], with each site offering at
least five system component roles:

• a gatekeeper that provided the gateway through which jobs are submitted
to local farm nodes,

• worker nodes (WN) or local farm of computing nodes where computation
could be actually executed; the combination of a Gatekeeper with its
WNs is usually called a computing element (CE),

• storage element (SE) or storage resource that included a Grid interface
ranging from large hierarchical storage management systems to disk
pools,
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• user interface (UI) machine, used by end-users to submit jobs to the Grid
CEs,

• local configuration (LCFG) server, used to install, configure and maintain
the above systems from a single management system.

The CrossGrid testbed included a set of tools and services such as moni-
toring tools, development tools, a remote access server, portals and a parallel
resource broker. It supported the Message Passing Interface (MPI), a popu-
lar, widely supported standard for writing parallel programs using message
passing [80]. Since the support of the CrossGrid Resource Broker for paral-
lel applications using the MPI implementation used in a Globus environment,
MPICH-G2 [97], was still being deployed at the time of the experiments, we
based most of the work on the standard MPICH-P4 device, via the CrossGrid
Resource Broker. For MPICH-G2 jobs we submitted the jobs directly, using
the Globus job submission capabilities.
We incorporated the VRE application into the Grid via CrossGrid’s por-

tals. One of the key components of the CrossGrid architecture was the Grid
portal offered by the Poznan team, the Migrating Desktop (MD) [104]. This
generic portal produces transparent user work environments, independent of
the system version and hardware, allowing the user to access Grid resources
and local resources from remote computers, via a back-end access service. It
allowes the user to run applications, manage data files, and store personal
settings, independent of the location or the terminal type. With the use of
the portal we achieved secured Grid access, node discovery and registration,
Grid data transfer, application initialization, medical data segmentation, seg-
mented data visualization, computational mesh creation, job submission, dis-
tributed blood flow visualization, and bypass creation.
The CrossGrid testbed provided transparent access to the distributedmed-

ical data of interest from medical image repositories acting as Grid Storage
Elements (SEs) and managed by CrossGrid’s Replica Manager. For the spe-
cific case of the interactive biomedical application, the main concerns were
clear: the simulation-centric application and available distributed visualiza-
tion services could be treated like black boxes initially, with the burden of
connectivity and interoperability resting on the interactive services needed to
run the solver on the Grid.
For some of the experiments we used the Dutch Distributed ASCI Su-

percomputer (DAS-2) (a smaller national wide-area distributed computer of
200 Dual Pentium-III nodes) before moving to the larger CrossGrid testbed.
This national distributed machine consisted of clusters of workstations, which
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were interconnected by SurfNet, the Dutch university Internet backbone for
wide-area communication. Myrinet, a popular multi-Gigabit LAN, was used
for local communication.
The DAS-2machine was used for research on parallel and distributed com-

puting by five Dutch universities: University of Amsterdam, Vrije Universiteit
Amsterdam, Delft University of Technology, Leiden University, and Univer-
sity of Utrecht. The cluster at the Vrije Universiteit contained 72 nodes, the
other four clusters had 32 nodes (200 nodes with 400 CPUs in total). Each
node contained two 1-GHz Pentium-IIIs, at least 1 GB RAM (1.5 GB for the
nodes in Leiden and UvA, and 2 GB for two larger nodes at the VU), a 20
GB local IDE disk (80 GB for Leiden and UvA), a Myrinet interface card, a
Fast Ethernet interface. The nodes within a local cluster were connected by
a Myrinet-2000 network, which is used as high-speed interconnect, mapped
into user-space. In addition, Fast Ethernet was used as OS network. The five
local clusters were connected by the Dutch university Internet backbone.

4.4.2 Actor Analysis

We approach architecture analysis of this Grid-based system by identifying
the hierarchical components to build the system prototype, as well as the in-
terfaces between such components. We take a system perspective that reflects
the concurrent nature of Grid systems, and use a graphical model for the rep-
resentation of Grid software architecture, which is based on the actor model
discussed in chapter 2.

Actor-based Grid Architecture

The actor representation of the interactive, simulation-centric biomedical sys-
tem is shown in Figure 4.4. We identify three actors that form the system or
stage: Interactor, Simulator and Visualizer, communicating through messages
via their input/output interfaces. The Interactor receives external input from
the user-in-the-loop, interacting with the Simulator and the Visualizer via the
simulate and visualize interfaces, while at the same time receiving feedback
from the Visualizer via the render interface.
Furthermore, the Simulator is shown as providing an interface to the Vi-

sualizer for transfering the output from the computation. Since our focus is
on the representation of the interactive characteristics of biomedical systems,
we treat the Simulator and Visualizer kernels as black box components, and
concentrate on the Interactor.
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Figure 4.4: Representation of a high-level interactive, simulation-centric biomedical
application; Interactor, Simulator and Visualizer actors exchange processes, where Inter-
actor and Simulator may access Visualizer concurrently to allow for greater levels of
Grid interaction

Figure 4.5: Expansion of the Interactor actor from the previos diagram; theData Handler
actor, that may perform image rendering and pre-data management services, interacts
with the Grid Portal and Job Manager actors
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As can be seen in Figure 4.5, the Interactor is composed by three actors:
Grid Portal, Data Handler and Job Manager. Both the Data Handler and the Grid
Portal receive external input from the upper level of actor containment in the
form of security certificates, image preparation directives, and so on. Grid
Portal communicates withData Handler via an ouput interface for data transfer,
and to Job Manager via another interface for user authentication, while getting
messages from both via an input interface from the Data Handler and the Job
Manager. The Data Handler offers an interface to the higher level Visualizer
actor for image rendering, while communicating with the Job Manager for data
access. The JobManager communicates with the higher level actors providing
the output interfaces for starting the simulation job and output visualization.

Figure 4.6: Detailed Grid Portal actor, which provides Grid security, data management
and application monitoring services to the system

TheGrid Portal actor is composed by theData Manager, ApplicationMonitor,
and the Security Provider actors, as shown in Figure 4.6. Data Manager offers
external input interfaces to the upper level actors for data transfer and initial-
ization, and to the Application Monitor for online monitoring, while offering
output interfaces to Security Provider for proxy creation, and to the upper level
for data transfer.
The Security Provider offers an output interface to the higher level Job

Manager for data transfer as well. Also, Application Monitor offers a single
input interface to the upper level for initialization.
The Job Manager actor is composed by the Infrastructure Monitor and the

Job Submitter actors (Figure 4.7). It is the Job submitter that takes the input
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Figure 4.7: Job Manager actor, providing Grid job submission, logging, and book-
keeping services via its Job Submitter and Infrastructure Monitor actors

from higher level actors, via interfaces for upper level simulation and visual-
ization service initialization, while offering input interfaces to the Infrastruc-
ture Monitor for status update and to the upper level for user authentication.
Finally, the Infrastructure Monitor offers the Job Manager’s input interface to the
upper level, for job data transfer.

Actor Signatures

The actors’ port signatures are based on the XML Schema actor interface def-
inition described in chapter 2, for matching of composite actor signatures and
basic structural data typing between actor ports. A code fragment is shown in
Figure 4.8. There, a stage is defined, containing actors simulator, visualizer and
interactor. The composite interactor contains actors data handler, job manager,
and grid portal. The composite grid portal is shown as containing actors data
manager, security provider, and application monitor. The figure also shows some
of the actors’ signatures, such as grid portal’s and data manager’s matching in-
Port transfer_data and start abstract interfaces.
Here, as in chapter 3, we use the actor model of computation for the repre-

sentation of concurrent behaviour in order to identify patterns of distributed
component behaviour across levels of complexity.

4.4.3 Architectural Instantiation

We next present a high-level UML model of the Grid architectural design,
based on the previous actor model, in order to map component interaction
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Figure 4.8: Actor port definitions: code fragment of the actor’s port signatures for the
CrossGrid biomedical application actor architecture, as described in Figures 4.4 - 4.7

to actual tools and infrastructure as provided by CrossGrid. Here, we fo-
cus on a conceptual level of architectural design, providing intuitive abstract
component and interaction diagrams for the instantiation of the highly dis-
tributed components. We underline architecture scalability and communica-
tion among stakeholders, which can be used as a basis for subsequent actor-
based architectural analysis.

Generic Components

We distinguish three different granularities of architectural views: Concep-
tual, Logical and Execution viewpointsas proposed by Bredemeyer et al. [37].
We work on the conceptual high level of design, as a basis for later interface
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specification and representation done at the logical level, and the validation
at runtime level of design.

We analyze the system mostly from the interaction-related viewpoint, de-
composing the system into key constructs related to components, relation-
ships and interactions, without zooming into interface specification details.
At this level we aim to capture the architectural vision, and understand high-
level relevant system functionality. To this end, we identify three first level
abstractions for designing simulation-centric interactive biomedical applica-
tions: Simulation, Visualization and Interaction. In this work we concentrate
mostly on the Interaction system, as mentioned before, and treat the Simulation
(Biomedical Solver) and Visualization (Visualization Kernel) systems as black
boxes: the simulation subsystem is composed of the simulation application,
which is loosely-coupled with the other components, and the visualization
component, realized as a visualization kernel running somewhere on the Grid
infrastructure that receives the simulation’s output. We elaborate on these is-
sues in the integration discussion.

Based on the previous actor analysis, we dissect the interaction component
functionality as containing three main components: Biomedical Data Handler,
Grid Portal and Job Manager:

• the biomedical data handler is a component used by scientists to apply
pre-processing on the datasets used by the simulation component. Once
such data preparation has taken place, it submits the simulation job via
the Grid portal component. Also, it is used for rendering of the output
from the visualization component,

• the Grid portal component provides secure data access and job monitor-
ing via its data management, Grid security infrastructure, job submission and
application monitor and benchmarker services,

• the job manager component is composed of job management and infrastruc-
ture monitoring services, for the submission of computational jobs and
resource monitoring.

We identify the high-level flow of information between system compo-
nents by means of abstract message interactions within the running system.
For instance, the sequence diagram in Figure 4.9 shows typical dynamic inter-
actions among components in the following process flow.
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Figure 4.9: Conceptual interaction diagram: detailed communication among abstract
components, with the workflow initiated by the Grid Security Infrastructure component
and finalized by the Biomedical Data Handler component

Component Instantiation

We mapped the actor-based architectural design to the specific VRE biomedi-
cal application, and the Grid infrastructure offered by CrossGrid middleware
and interactive services (Figure 4.10). The VRE application for blood flow
simulation is used, which is loosely coupled with the CrossGrid Grid Visual-
ization Kernel (GVK) [103] and the Grid portal components, via the portal’s
backend roaming access service component. We use the VRE rendering facil-
ities, the DesktopVRE and Personal Space Station (PSS) [122] loosely coupled
with the GVK, RB and Globus and Datagrid data management components
such as GridFTP and Replica Locator Service (RLS).
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The portal allows the use of Public Key Infrastructure (PKI) security, based
on Globus GSI and other components such as Virtual Organization servers
(VOServer). Both application monitoring and benchmarking via CrossGrid’s
Grid Performance Monitoring (GPM) and GridBench applications, as well as
other infrastructure services. For further details on integration and validation,
we refer the reader to [154].

Figure 4.10: Mapping of the Grid architecture to the VRE application and CrossGrid in-
frastructure. The CrossGrid Migrating Desktop portal offers a number of components
such as a virtual organization server, Globus GridFTP, EDG Replica Location Service
and Resource Broker, as well as back-end monitoring and benchmarking services. Our
simulation solver is loosely integrated with the portal’s Roaming Access Server and
Grid Visualization Kernel

4.5 Grid-based Prototype

Once we designed and specified the Grid architecture, we consider the fol-
lowing scenario, as described in Figure 4.11: a patient walks into a medical
center scanning room in Leiden to get his blood flow measured, the techni-
cian scans the abdominal aorta area, and the resulting image is stored in the
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radiology information system repository or local PACS, to be pre-examined
and segmented. Later, a physician (user) in Amsterdam logs into the Grid
portal using his Grid certificate and private key. The user checks if there are
segmentedmedical data sets ready for analysis, and securely transfers a few to
Grid virtual repositories. The user then starts the desktop version of the VRE
from within the portal, loads the segmented medical data, selects a region of
interest, crops image, adds a bypass, and creates a computational mesh. The
user submits the data for simulation on the Grid, to the nearest/most ade-
quate computing element in the computational infrastructure using a replica
manager service. The user may then check status of the job submitted via the
portal. After the job has been completed, the relevant parameters (e.g., ve-
locities, pressure, shear stress) are transferred to the local storage element or
directly to the appropriate visualization service to be rendered and reviewed
by the user. All processes are transparent to the user, and components such
as the visualization service are loosely-coupled transparently into the process
flow [152]. We next elaborate on some of the steps in this scenario, and how
we prototyped the architecture.

4.5.1 Medical Image Segmentation and Access

Once medical images are acquired, e.g., by magnetic resonance angiography
(MRA), the data is stored in a medical image repository for further analysis.
Next, advanced image segmentation techniques are applied: the accurate as-
sessment of the presence and extent of vascular disease requires the determi-
nation of vessel dimensions. For this, a method for automatically determining
the trajectory of the vessel of interest, the luminal boundaries, and subsequent
the vessel dimensions has been developed by the Department of Radiology,
Leiden University Medical Center (LUMC) [110]. Relevant 3D structures such
as arteries are extracted from the raw data.
The Grid portal enables access to the Grid resources from roaming ma-

chines like stand-alone personal computers, notebooks or desktop worksta-
tions. It allows running applications, managing data files, and storing per-
sonal settings independently of the localization or the terminal type. Users
may handle Grid and local resources, run applications, manage data files, and
store personal settings. The portal provides a front-end framework for embed-
ding some of the application mechanisms and interfaces, and facilitates the
user virtual access to Grid resources from other computational nodes. Access
to the testbed is based on globus Grid security infrastructure (GSI). GSI uses
public key encryption, X.509 certificates, and the secure sockets layer (SSL)
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Figure 4.11: Data and process flow in the VRE environment, where a Grid-based vir-
tual simulated environment is used to access medical image data, visualize it, and
explore patient vascular condition; here the Grid-based process flow allows for natural
mapping to the user process flow

communications protocol. Extensions to these standards have been added for
single sign-on and delegation. The GSI provides a delegation capability, with
an extension of the standard SSL protocol to reduce the number of times the
user must enter his pass phrase, as done withiin the CrossGrid portal. If a
Grid computation requires several Grid resources, or if there is a need to have
agents requesting services on behalf of a user, the need to re-enter the user’s
pass phrase is avoided by creating a proxy.

The segmentation step is connected to the DesktopVRE-based reconstruc-
tion of a 3D model of an artery. Furthermore, geometrical modeling tools al-
low the interactive manipulation of medical images for pre-processing such as
clipping, editing of LBM mesh, handling of problematic areas and interactive
placement of a bypass (Figure 4.12).
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Figure 4.12: Segmented data rendering, bypass creation, and Lattice-Boltzmann mesh
creation in the 2D Desktop Virtual Radiology Explorer; the LBM mesh editing also
allows indicating boundary conditions

4.5.2 Virtual Browsing and Data Access

The portal uses the roaming access service, a set of back-end portal services
that are used by the portal front-end. The access service is also responsible
for communicating with other modules, and offers a set of services such as
a lightweight directory access protocol manager service responsible for stor-
ing the user profiles, a job submission service that provides an interface that
makes accessible the submission mechanisms, an scheduling agent, and a ses-
sion manager service responsible for managing application-user session. Data
transfer in the testbed is based on Globus GridFTP [6], a common data trans-
fer and access protocol that provides secure, efficient data movement in Grid
environments.
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4.5.3 Job Submission and Infrastructure Monitoring

Within the portal, application-specific information can be described using XML
schema. In order to integrate visualization libraries into the computational
Grid testbed, we created and posted application XML schemata for job sub-
mission, to be dynamically linked to the portal. Then XML style sheet transfor-
mations (XSLT) were used in order to transform the schemas into appropriate
XHTML. The portal sends the job request to the access service, which then is
sent to a job submission service, which then submits the job to a resource bro-
ker (RB) and logs all operations. The RB starts the job on the target computing
element. Before the job is started, though, a job submission script downloads
all necessary files for simulation from a virtual node. Within the portal, we
used the EDG replica manager, which allows one to copy files into Grid stor-
age, register files, replicate files between SEs, delete individual replicas, and
delete all replicas of a particular file.

Grid monitoring is included as services for applications as well as for in-
struments and infrastructure. Application monitoring is different from mon-
itoring infrastructure, so separate approaches were available in CrossGrid,
with application monitoring aimed at observing a particular execution of an
application. The collected data is useful for tools for application development
support, which were used to detect bugs, bottlenecks or just visualize the ap-
plication’s behavior, in the context of a particular execution. For our purposes,
we use the main Grid portal and CrossGrid light-weight portal capabilities for
monitoring job submission (Figure 4.13).

We also worked on the integration of more advanced application moni-
toring and performance prediction tools offered by the CrossGrid, as well as
fine-grain infrastructure monitoring to allow for more interactive usage of col-
lected information. The application monitoring infrastructure developed in
the CrossGrid is the Grid-based OMIS-compliant Monitoring (OCM-G) [17], a
distributed descentralized, autonomous system that runs as a permanent Grid
service. It provides monitoring services accesible via a standardized interface,
to be used by visual tools such as Grid-Performance Monitoring (GPM) [41].
We used GPM extensively to define our own performance metrics, to access a
set of fixed available ones, and to handle the process of measuring the perfor-
mance properties. We also used GridBench [156], a tool developed to manage
benchmarking experiments, publish their results, and produce graphical rep-
resentations of their results.
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Figure 4.13: Simulation monitoring via the CrossGrid light-weight portal, based on an
Enterprise Information Portal, using Java and XML, and interfacingwith a light-weight
personal digital assistant (PDA)

4.5.4 Blood Flow Visualization and Rendering

After jobs are completed, the output is redirected to Grid visualization tools
either to anywhere in the network or to a specific CE where the simulation has
run, to avoid large data transfers. We address the combination of Grid appli-
cations and corresponding visualization clients on the Grid. While Grids offer
a means to process large amounts of data across distant resources, visualiza-
tion aids in understanding the meaning of data. For this reason, visualization
capabilities use Globus services, thereby providing Grid visualization services
via dedicated interfaces and protocols while at the same time exploiting the
performance of the Grid for visualization purposes.
A resource intensive module of the visualization pipeline is instantiated on

a high-performance computer. Then, the visualization pipeline on a graphics
workstation connects (via re-direction through the portal service) to this mod-
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ule, uses the power of the high-performance computer to generate the visual
results, and downloads them to the visualization device. We created links
within the Grid portal for initialization of the visualization client application,
and experimented with rendering the flow both remotely and locally in the
access storage element. This way, remote visualization and local rendering
were fully linked via the portal, for final rendering in 2D or 3D rendering
work stations.

4.6 Results

In this section we present results after prototyping the Grid architecture for an
interactive biomedical application and deploying it on the CrossGrid testbed
infrastructure. We begin the discussion with a Computational Grid analysis
using the application benchmarking and online monitoring experiments from
the viewpoint of resource selection, followed by a Data Grid analysis using
data access experiments from the viewpoint of integration with Grid services
like visualization.

4.6.1 Grid Interoperability

We study biomedical data transfer and job submission among these infrastruc-
tures, focusing on biomedical dataset transfer times, CPU usage overhead, as
well as job submission using both intra and inter cluster computational runs.
We discuss Grid architectural interoperability in the context of the Open Grid
Service Architecture (OGSA), and service semantics issues. Even though we
focus mostly on Grid infrastructures and services based on the LCG model
in this thesis, we experiment with OGSA infrastructure interoperability in the
context of future extensions to the results. Our experimental Grid infrastruc-
ture is based on and supported by the CrossGrid project’s testbed, including
resources spread across Europe, which range from relatively small computing
facilities in universities to large research computing centers.

Framework Interoperability

The CrossGrid testbed largely inherits from the European DataGrid (EDG)
[89] experience on setup and it is fully based on LCG middleware distribu-
tions for services. The basic security requirements are covered by the Grid
Security Infrastructure (GSI) and its public key services, so the priority is to
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make sure that biomedical data access from Storage Elements (SEs) remains
reliable, and that the data management services do not overwhelm the re-
sources. The focus is on allowing users transparent data access for analysis
and computational job submission, acccording to a basic usage scenario. The
user of the application loads the biomedical medical data, selects a region of
interest, and submits the analyzed data for simulation. After the job has been
completed, the results are transferred to local machines for visualization and
rendering. This scenario assumes a number of data transfers, both input seg-
mented data for the simulation application, as well as simulation output to be
visualized. In the LCG-based infrastructure we use Globus GridFTP andData-
Grid Replica Locator Service (RLS) to transfer data between Grid nodes. We
set out to replicate some characteristics of this behaviour between the testbed
and a few newly added GT4 nodes. The recent addition of new resources
to our Grid infrastructure provides us with increased computational capacity.
However, evolution in Grid middleware raises issues of structural interoper-
ability, specially when migrating from established architectural paradigms to
new ones.
In the current Grid infrastructure, which relies on the CrossGrid middle-

ware, we make use of both MPICH-P4 and MPICH-G2 MPI devices to run the
application. Support for MPICH-P4 is available for more recent Grid produc-
tion middleware releases; MPICH-G2 support is usually known to be unsta-
ble, at best. In order to explore the support for both MPICH-P4 and MPICH-
G2, we proceed to execute and measure the performance of the application
on three different platforms. These three platforms include the current infras-
tructure (LCG2.0 for production and LCG 2.3 for development versions), the
LCG 2.6 production middleware release of the EGEE project, and the Globus
Toolkit 4. We use globus-job-run and globusrun-ws, where available, for the
MPICH-P4 runs, while MPICH-G2 runs were initiated directly by Globus Re-
source Specification Language.
We transfer a number of representative compressed input datasets between

new GT4 and CrossGrid LCG SEs spread out across Europe, measuring trans-
fer times for comparing performance of the GridFTP implementations. Once
we successfully transfered the input geometry data files betweenGT4, LCG2.0,
LCG2.3 and LCG 2.6 resources, we then made a number of transfers using
larger simulation output files, studying CPU usage to get an idea of the over-
head caused by the transfers.
In those experiments, the LCG2.0 machine performed significantly faster

due to superior hardware specifications. The total iteration time of the LCG
2.6 machine was slightly lower than that of the GT4 machine, but the total
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execution time tended to be equal or slightly higher.

4.6.2 Grid Data Access

We next describe data access experiments between the CrossGrid portal and
the Grid Visualization Kernel (GVK) [82] for blood flow visualization. We
focus on the initial integration into the interactive, simulation-centric biomed-
ical application running on the Grid. GVK is a middleware developed at GUP
Linz within the European CrossGrid project, which aims to enable the use of
visualization services within computational Grids. The idea of GVK is to en-
capsulate modules of an arbitrary visualization pipeline and distribute these
modules to a number of computing elements across the Grid. By intercon-
necting these modules, the visualization environment takes advantage of the
benefits offered by the Grid, such as location independence and efficient net-
work transportation. We test virtual node creation, job submission and flow
visualization via Grid technologies based on Web Services, and experiment
with secured file transfer and flow visualization.
The GVK addresses the combination of Grid applications and correspond-

ing visualization clients. The visualization capabilities of GVK are imple-
mented using Globus services, thereby providing flexible services via dedi-
cated interfaces and protocols while at the same time exploiting the perfor-
mance of the Grid for visualization purposes. We extend the work on medical
data simulation and visualization to the Grid via the CrossGrid Grid portal.
The Grid portal is an application that offers a seamless interface which is

independent of software and hardware environments, on which applications
and resources may be highly distributed. The portal rests on a set of back-end
portal services which are used by the portal front-end. These access services
are also responsible for communicating with other modules, and offer a set
of services such as an LDAP manager service responsible for storing the user
profiles, a job submission service, an scheduling agent, and a session manager
service responsible formanaging application-user session. We integrated local
visualization workstations and mesh creation applications with the Grid visu-
alization service, configuring all relevant libraries, and used sites registered
within the VO, such as Amsterdam and Leiden, for testing secure GridFTP [6]
data transfer between storage and computing elements.
It is important that, when prototyping the system, the latency shown by

the Grid transfer of datasets was comparable with common data transfer. We
set out to perform a set of experiments for the transfer of segmented medical
datasets, ranging from 24 KB up to approximately 5 MB loads. When com-
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paring the transfer times of the medical data, we found that average transfer
times, once taking into account the Globus caching mechanism (GASS manip-
ulation of local file caching), did not vary much above 400ms for the smaller
size files and no more than 850ms for the larger size files, which is comparable
to regular FTP functionality (Figure 4.14).
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Figure 4.14: GridFTP transfer times to roaming access nodes; transfer times of the
data, at time steps of 20 seconds, showing average transfer times to roaming storage
elements running nodes, once taking into account the Globus caching mechanism, not
varing much above 200 milliseconds for the smaller size files and no more than 350
miliseconds for the larger size files

We found during the initial efforts that integration of the testbed and vi-
sualization libraries are not a trivial task, but the added functionality and
security infrastructure offered by Grid technologies came at a minimal per-
formance cost.

4.6.3 Grid Application Benchmarking

The fact that jobs fail frequently on the Grid has has been widely documented
[32, 161]. There are many reasons for this, like having high levels of resource
diversity with varying performance at runtime [119]. One of the main reasons,
though, is the fact that resource broker components, which are part of job
submission services, are normally implemented to take a rather naive aproach
to resource selection, affecting the selection process and therefore the ratio of



82 INTERACTIVE GRIDS

submitted against aborted jobs, as shown in Figure 4.15. There is interesting
work on extensions to the classic benchmarks [72], low-level probes [51], as
well as Relational GMA [52], an extension to the widely used Grid monitoring
architecture accepted as a standard for Grid monitoring systems.

Figure 4.15: Statistical information about Grid Computational and Storage Elements,
from the CrossGrid Resorce Broker, showing CEs’ SpecInt2000 values, published by
the CrossGrid Information Index, showing total number of jobs submitted, matched
and run jobs by the CEs, and jobs aborted; the rank is computed by taking the average
rank of the clusters, weighted by the number of free CPUs they contribute

Objectives

Resource selection in Grid environments is a crucial problem. Regardless of
who performs the resource selection, be it users or automated systems, the de-
cisionmakers are facedwith the difficult task of matching/mapping jobs to re-
sources. Previous work on the specification of resources and services in com-
plex heterogeneous computing systems and metacomputing environments in
general [39] and particularly in Grid environments, has led to a better under-
standing of the issues.
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The impact of the evolution and wide acceptance of Grid architectures un-
derlines the need for addressing and validating the application-specific char-
acterization of available resources. For instance, Grid application benchmark-
ing, or the characterization of Grid computational resources for improving
resource selection, can be used to help improving the performance of com-
putationally intensive parallel applications by enhacing the resource selection
process. Since the application is often run in multiple instances using param-
eterised runs, it would be desirable to have acces to information that would
help to better schedule these jobs.
We investigate the levels of performance offered by hardware resources

distributed across the CrossGrid European computational Grid for the biomed-
ical application and show how to rank resources based on a benchmark de-
rived from the blood-flow simulation. For the experiments, we use a Grid
benchmarking framework developed within the CrossGrid project, the Grid-
Bench tool.

The GridBench Tool

GridBench [156] consists of a framework containing a set of components that
aim to facilitate the characterization of Grid nodes or collections of Grid re-
sources. The framework has two main objectives: to generate metrics that
characterize the performance capacity of resources belonging to a Virtual Or-
ganization (VO), and to provide a tool for researchers that wish to investigate
various aspects of Grid performance using well-understood applications that
are representative of more complex applications deployed on the Grid. In or-
der to perform benchmarkingmeasurements in an organized and flexible way,
GridBench provides a means for running benchmarks on Grid environments
as well as collecting, archiving, and publishing the results. The framework
allows for convenient integration of new and existing benchmarks into the
suite, as well as the customization of existing benchmarks through parame-
ters. We have used the tool extensively to perform the biomedical application
benchmarking experiments.

Resource Comparison

The VRE biomedical application involves heavy processing of 3D data, which
makes it computationally expensive. Figures 417 - 419 show the computation-
ally intensive part of the application, which uses the Message Passing Inter-
face (MPI) for parallelization. This code is instrumented to measure elapsed
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time for each iteration as well as the time spent on MPI communication, and
integrated into GridBench. As a dataset we used different sample files that
represent normal workload, from simple tube-like artery structures to aorta
segments containing bifurcartions.
For the experiments, we have set the biomedical application to run for 800

iterations, so it can be seen that right before the end of each run (at around 760
to 780 iterations) a jump in performance of about 30% larger time per itera-
tion values is experienced in all nodes (Figure 4.16). This is mainly due to the
design of the current version of the application, where the first processor that
started running gathers data from all other processors before producing the
final output. Nevertheless, iteration times remain relatively invariant regard-
less of the number of iterations. For this reason it is reasonable to assume that
short run-time experiments (using a small number of iterations) are represen-
tative of real-life experiments, in which we use larger iteration counts. Figure
4.16 also shows the performance of the application at a set of sites using 4, 8
and 12 CPUs respectively. Generally we observed a downward trend indicat-
ing that the code is somewhat scalable, i.e. using a larger number of CPUs at
a given site yielded a faster run-time (Figure 4.17).

Communication Measurements

The biomedical application used MPI for inter-proces communication, which
we compiled using the MPICH4 device. The code is highly coupled and we
expected that the performance of the interconnect, i.e., the LAN connecting
the cluster nodes had a considerable impact on the performance of the appli-
cation. To investigate this, the biomedical application code is instrumented to
measure the time spent in communication∗.
To isolate the effect of the network we ran the code using just two CPUs

on a dual-CPU Worker Node (1x2)†, using two CPUs on two different (iden-
tical) Worker Nodes (2x1). This is shown in Figure 4.18. There, we show a
similar experiment using 4 CPUs, whereas the other figure shows that there
is considerable difference in communication performance, which also impacts
the time per iteration. On the other hand, in the first plot we observe no sig-
nificant difference when running in either mode, since the network is used is
both cases (both in 2x2 and in 4x1).

∗The impact of the instrumentation was measured and found to be insignificant.
†The MPI library used was not optimized for SMP, and communication still went through the

TCP/IP stack.
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Figure 4.16: Performance of the biomedical application, running for 1000 iterations, at
a set of distributed sites using 2, 4 and 8 CPUs. In each case, the same workload is ap-
plied by using identical input data and parameters. It shows the results obtained by us-
ing 2 CPUs in each measurement. Also, for 2 CPUmeasurements, using 2 CPUs on the
same Worker Node is preferred over using two CPUs on two different Worker Nodes.
This is important, since it is found that this would seriously impact performance of
this application, as seen in Figure 4.18. Resources cluster.ui.sav.sk and loki01.ific.uv.es
employ single-CPU nodes while the majority of site employ dual-CPUWorker Nodes
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Figure 4.17: Benchmarking the biomedical application at two sites: cgce.ifca.org.es (up
to 12 CPUs) and cluster.ui.sav.sk (up to 12 CPUs). It is quite interesting to observe that
the different sites display a different scalability. For example, the cgce.ifca.org.es site
shows that the runtime is reduced to less than 30%when going from 2 CPUs to 8 CPUs,
while cluster.ui.sav.sk shows that the improvement is only just under 50%. Similarly,
while in cgce.ifca.org.es there is approximately a 25% improvement in runtime when
going from 8 CPUs to 12 CPUs, in cluster.ui.sav.sk there is only marginal improvement.
Scalability at each resource needs to be taken into consideration for efficient resource
selection

Decision-making from Benchmarking Results

Figure 4.19 conveys usefull information since it provides a ranking of run
times on all of the resources available. This ranking could be used directly
in resource selection specially in cases where the relative CPU, Memory and
network speeds at each resource (site) are not known. For example, it ap-
pears that it is better to run the code at zeus24.cyf-kr.edu.pl using 4 CPUs than
at cluster.ui.sav.sk using 8 CPUs.
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Figure 4.18: Effect of MPI communication on runtime; shows iteration and communi-
cation times using 2 CPUs on the same (dual) Worker Node (1x2), and 1 CPU on each
of 2 Worker Nodes; the second plot shows iteration and communication times using 2
CPUs on each of 2 (dual) Worker Nodes (2x2), and 1 CPU on each of 4 Worker Nodes
(4x1)

4.6.4 Online Performance Monitoring

Distributed computational resources should provide the required performance
for large-scale simulations, complex visualization, and collaborative environ-
ments which are expected to become of major importance to different areas
of medicine [38]. The evolution of Grid architectures has underlined the need
for addressing application specific, on-line monitoring of the resources avail-
able to scientists. On-line performance monitoring in Grid environments is
a very useful technique [40, 81], particularly when dealing with interactive
applications that include a human expert in the loop. Regardless of who per-
forms the application optimization, users can greatly benefit from up-to-date
knowledge of Grid resource performance (as opposed to post-mortem analy-
sis) in order to make the difficult task of matching/mapping jobs to resources
a more efficient one, or to identify application performance bottlenecks.
Connectivity between distant locations, interoperability between differ-

ent kinds of systems and resources, and high levels of computational perfor-
mance are some of the most promising characteristics that the Grid offers for
biomedical applications. We instrumented the VRE biomedical application to
work seamlessly with the CrossGrid online monitoring infrastructure. It is
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Figure 4.19: Completion times of the biomedical application using different numbers
of CPUs on several resources

an important requirement for us that the initialization of the online monitor-
ing tool we use does not interfere with normal job submission to the testbed,
and the Grid Performance Monitoring tool (G-PM) [41] fills this requirement
flawlessly by virtue of its loosely-coupled integration with the testbed.

Grid Monitoring

The monitoring infrastructure developed in the CrossGrid is the Grid-based
OMIS Compliant Monitoring (OCM-G) infrastructure [18], a distributed de-
centralized, autonomous system that runs as a permanent Grid service. It pro-
vides monitoring services accessible via a standardized interface, to be used
by visual tools such as G-PM.We use G-PM extensively to access a set of fixed,
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predefined performance metrics, and to handle the process of measuring the
performance properties. G-PM allows us to measure application and Grid re-
source response times and their breakdown, detailing performance data for
specific interactions while the application is still running. This is very useful
for us to determine performance bottlenecks and computational Grid resource
responses to specific loads, allowing us to immediately correlate performance
data with the application’s behavioral patterns at specific Grid resources.

Integration

We instrumented the application to OCM-G, which meant linking the applica-
tion with instrumented versions of runtime libraries containing communica-
tion and I/O routines. Also we added a few lines of code for more application-
specific information to be taken into account for the performance analysis.
Once the G-PM graphical interface is running, we can interactively define
measurements and select proper visualization modes for the results.
As mentioned before, the blood flow simulation application involves pro-

cessing of 3D data, which makes it computationally expensive. For the com-
putationally intensive part of the solver, MPI is used for parallelization, via
the MPICH-P4 device.

Monitoring Results

We run a set of experiments on a number of computational resources on the
CrossGrid production testbed, monitoring computing time, node load, com-
munication delay per iteration, and iteration time at different resources, with
different loads. For result visualization, we used an integral mode, aggre-
gating results when relevant, with multicurve graphs. We used linear scale
partition, in real time mode, and with variable scales. From experience work-
ing with the CrossGrid’s Resource Broker (RB), resource selection left to the
RB can give us a success rate of roughly 60% (we run around 100 job sub-
mission tests for this experiments, with diverse configurations). Nevertheless,
once we run performance monitoring tests and ranked the potential target
resources to use with the help of G-PM, we achieved near 90% success rate.
We rated a number of computational resources according to success rate of
job completion, communication delay per iteration, and iteration time, among
other metrics (Figures 4.20 and 4.21).
For comparison with RB success rates we submitted simulation jobs man-

ually to those resources that, e.g., offered a higher success rate or less com-
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Figure 4.20: Node load, or UNIX load value showing exponential mean of run
queue length in the last minute. Here the number of ready processes in 2 clusters
(cgce.ifca.org.es, cluster.ui.sav.sk) are pretty much synchronized except for a brief pe-
riod between t=3m50s and t=5m50s, which gives us similar completion times, useful
for comparison of blood flow results with different Reynolds numbers

Figure 4.21: Simulation monitoring of the blood flow simulation in the CrossGrid,
via OCM-G/G-PM: graph showing communication delay per iteration or percentage
of time which the solver spends in communication routines in one iteration, at time-
scales of simulation within 7 minutes of running time (x-axis) and delay (y-axis). The
figure identifies a two-fold jump in amount of time in communication at t=5m32s, and
points out to a possible bottleneck on application performance
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pounded delay. We used the tool’s defaults aggregation modes for perfor-
mance visualization, resulting in a single measurement result, which is the
aggregate of the results for all selected objects. For instance, in communica-
tion delay per iteration, since the processes of the solver are tightly synchro-
nized, it is sufficient to measure the iteration time in one process because it is
the same in all processes.

4.7 Conclusions

The prototype of the system’s architecture, running within a large Grid virtual
computer, was analyzed and a set of benchmarking experiments for specific
computation versus communication metrics was performed. We found that
ranking resources based on the performance of a stripped-down and instru-
mented version of an application can give us realistic resource rankings that
reflect the performance of the application itself. We have shown how the re-
sults obtained using GridBench can be used for ranking of resources and how
they can help in resource selection.

In regards to Grid interoperability, we were pleasantly surprised by our
relatively smooth experience running the prototype with the MPICH-G2 de-
vice simultaneously on both the LCG 2.6 and GT4 middleware, with runs per-
formed on both platforms and providing a competitive total execution time,
regardless of the location where the run was initiated. To the best of our
knowledge, this is the first work to report successful runs of a real compu-
tationally intensive application using multiple nodes featuring different mid-
dleware in a production-type test bed.

Moreover, integration of visualization libraries to the computational Grid
testbed proved quite smooth; we created and posted application XML schema
for job submission, to be dynamically linked to the Grid portal via a job sumb-
mission wizard and created links within the portal to initialization of both the
Grid visualization client and server startup applications, and experimented
with rendering the flow both remotely and locally in the access storage el-
ement. This way, Grid remote visualization and local rendering were fully
linked via the Grid portal.
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4.8 Summary

In this chapter we developed an architecture for distributed problem solv-
ing environments on the Grid, modeled it, and prototyped it for conduct-
ing computer simulation experiments in pre-operative planning of vascular
reconstruction with a physician in the experimental loop. This prototype of
a problem solving environment offers an integrative approach for construct-
ing and running complex interactive systems. Grid resources are used for ac-
cess to medical image repositories, segmentation services, simulation of blood
flow, and visualization in virtual environments of the simulated results to-
gether with medical data obtained from MRI/CT scanners. This complete
framework for virtual exploration environment permits a user to explore in-
teractively the visualized results of a simulation, and manipulate the simu-
lation parameters in near real-time. We introduced the generic architectural
requirements, defined a generic component-based software architecture and
its abtract interactions, and identified a specific use case for validation of the
architecture, allowing us to experiment with issues related to data transfer
interoperability and performance (Table 4.1).

Table 4.1: Extending the Virtual Radiology Explorer with Grid computing infrastruc-
ture and resource virtualization, which enabled unified access to virtual resources, a
scalable service-based architecture based on a resource-centric model, near real-time
interactivity and the potentially concurrent access to distributed resources within a
virtual organization

State of the art Contribution

Problem Solving Environment Highly-distributed Problem Solv-
ing Environment

Tightly-coupled client/server
model

VO-based loosely-coupled im-
plementation

Component-based architecture Service-based architecture
Real-time interactivity Near real-time interactivity
Centralized security model PKI-based access to virtual re-

sources (data, services, compu-
tational, instruments)

Data-centric model Resource-centric model
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Virtual Collaboratories∗

5.1 Introduction

The challenges discovered when studying humans as complex systems, from
a biomedical viewpoint (from cells to interacting individuals), cover the whole
spectrum from genome to health and cross temporal and spatial scales [141].
This includes studying biomedical issues using multiscale and multiscience
models and techniques all the way from genomics to the macroscopic medi-
cal scale (Figure 5.1). This is also complicated by the continuous increase in
the amount of digital data produced by modern high-throughput biomedical
detection and analysis systems. New experiments in science and engineer-

∗The results presented in this chapter formed the basis for the following three papers:

• A. Tirado-Ramos, P.M.A. Sloot, M. Bubak, "Grid-based Interactive Decision Support in
BioMedicine", Grids for Bioinformatics and Computational Biology, T. El-Ghazali and A.
Zomaya Editors, John Wiley and Sons, USA, in press.

• P.M.A. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, C.A. Boucher, "From Molecule to
Man: Decision Support in Individualized E-Health", IEEE Computer, November 2006, vol.
39, no. 11, pp. 40-46.

• P.M.A. Sloot, A.V. Boukhanovsky, W. Keulen, A. Tirado-Ramos, C.A. Boucher, "A Grid-
based HIV Expert System", Journal of Clinical Monitoring and Computing, October 2005, vol.
19, nr. 4-5, pp. 263-278.
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Figure 5.1: Time and space: studying drug response in infectious diseases requires
multiscale, multiscience models and techniques to cover the huge spatial and temporal
scales [142]

ing will cover the whole spectrum, from the simulation of complete biological
systems, to cutting-edge research in bioinformatics.
In this chapter, we analyze the design and early work on a virtual labo-

ratory that enables Grid-based access to highly distributed resources for pro-
cessing and analyzing virological, immunological, clinical and experimental
data. We extend our discussion on the challenges foundwhen addressing soft-
ware architectures to support multiscience complex systems, from a biomedi-
cal informatics viewpoint. For this, we elaborate on a Grid-based framework
for large scale collaborative e-Science, the ViroLab, that builds on the lessons
learned from the previous highly-distributed system analyses.

5.1.1 Problem Statement

As we have seen in chapters 3 and 4, research efforts in biomedical informatics
at the macroscopic scale are gradually pushing the boundaries of the state
of the art, moving from monolitic software architectures to building more
generic components. Such efforts normally leverage object-oriented and dis-
tributed component architectures to encapsulate or wrap legacy data in order
to improve application interoperability and scalability [117, 151]. This allows



5.1 INTRODUCTION 95

for enhanced data and process flow at the macroscopic level, where models
such as DICOM provide support for data acces from work stations to archiv-
ing and communications systems and back to hospitals’ information systems.
Current distributed computing technologies address communication be-

tween tightly-coupled systems very well, though may fail when addressing
loosely-coupled resources. Such resources may belong to sites within large
distributed virtual organizations that use distributed computing models like
CORBA. These technologies allow seamless and secure data access within a
single organization. Large amounts of data can be distributed across domains,
with distributed applications forming federations that may be scaled but that
assume architecturally invariant systems. Relational data representation and
access, modular component and object orientedmodels have clearly advanced
the state of the art.
New sets of conditions and requirements for software architectures for

biomedical applications are emerging in the field, like in systems biology,
where genetic information is becoming increasingly significant. This stems
from the recent and anticipated achievements in the use of genomics for the
understanding of the role of genetic factors in human health and disease. One
representative example of applications of genetic information in biomedical
informatics is the case of decision support systems for researching drug re-
sistance.

5.1.2 Chapter Organization

We describe an interactive decision support environment, from the perspec-
tive of bioinformatics, for a system-level approach to distributed collabora-
tive laboratories. We focus on a complex system centered around a decision
support engine for drug ranking in Human Immunodeficiency Virus (HIV)
drug-resistance. Our reasons to use this bioinformatics application as main
case study in this chapter are twofold: HIV drug resistance is becoming an
increasing problem worldwide, with combination therapy with antiretrovi-
ral drugs failing to completely suppress the virus in a considerable number
of HIV-infected patients. On the other hand, HIV drug resistance is one of
the few areas in medicine where genetic information is widely available and
has been used for many years. This has resulted in large numbers of data
available, not only on complex genetic sequences but on all levels, up to pop-
ulations. The sheer complexity of the disease, the distribution of the data, the
required automatic updates to the knowledge base, and the efficient use and
integration of advanced statistical and numerical techniques necessary to as-
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sist the physician motivate our research. We elaborate here on some of the
possibilities for individualized e-Science that can be supported by virtual col-
laborative environments based on Grid technology.

5.2 Individualized e-Science

Computer system architectures reflect the same laws and organizing princi-
ples used to build individualized biomedical systems, which can account for
variations in physiology, treatment, and drug response. Closing the computa-
tional gap in systems biology requires constructing, integrating, and manag-
ing a plethora of models. A bottom-up, data-driven approach will not work
for this: integrating often incompatible applications and tools for data ac-
quisition, registration, storage, provenance, organization, analysis, and pre-
sentation can be greatly enhanced by innovative and scalable aproaches like
Web and Grid services. Once the computational and integration challenges
are adressed, we need a system-level approach to close the collaboration and
interaction gap. Such an approach would involve sharing processes, data, in-
formation, and knowledge across geographic and organizational boundaries
within the context of distributed, multidisciplinary, and multi-organizational
collaboration teams, or virtual organizations. These methods dynamically
streamline and, most importantly, individualize scientific data flow processes
depending on their availability, reliability, and the specific interests of medical
doctors, surgeons, clinical experts, researchers, and other end users. We call
this a molecule to man approach [138] (Figure 5.2).

5.3 The ViroLab Collaboratory

During the past decade, researchers have made significant progress in treat-
ing patients with viral diseases. Effective antiretroviral therapy has lead to
sustained HIV viral suppression and immunological recovery in patients who
have been infected with the virus. Long-term therapy can lead to metabolic
complications. Other treatment options are now available, with the recent
introduction to clinical practice of fusion inhibitors, second-generation non-
nucleoside reverse transcriptase inhibitors, and nucleotide reverse transcrip-
tase inhibitors. However, in order to completely suppress the virus, patients
must take a combination of at least two of the four different classes of an-
tiretroviral drugs [61].
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Figure 5.2: Data flow model in ViroLab, showing the model for prediction of the tem-
poral behaviour of the immune system to drug therapy aims to qualitatively corre-
spond to clinical data. The multiscale approach from micro parameters such as pro-
tease mutations to macro results at the clinical level go through primary, interven-
tional and meta virological parameters, as supported by the virtual laboratory; see
www.virolab.org

Nevertheless, in a significant proportion of patients the drugs fail to com-
pletely suppress the viral disease, resulting in the rapid selection of drug-
resistant viruses and loss of drug effectiveness. This complicates the clini-
cian’s decision process, since clinical interpretation is based on data sets relat-
ing mutations to changes in drug sensitivity and relating mutations present
in the virus to clinical responses to specific treatment regimens. In recent
years, though, researchers have developed several genotypic resistance and
interpretation tools that help clinicians and virologists choose effective ther-
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apeutic alternatives to address, e.g., genotypic resistance interpretation. In
this context, applying artificial intelligence and computational techniques to
biomedicine has resulted in the development of specialized computer-based
Decision Support Systems (DSSs) for biomedicine.
Recent developments in distributed computing further allow the virtual-

ization of the data, computational, and software resources required by com-
plex e-Science [83]. ViroLab is an international collaboration whose goal is to
provide such virtual laboratory where researchers and medical doctors have
easy access to distributed simulations and can share, process, and analyze vi-
rological, immunological, clinical, and experimental infectious disease data
[139]. Currently, virologists browse journals, select results, compile them for
discussion, and derive rules for ranking and making decisions. ViroLab’s
Grid-based DSS for infectious diseases consists of modules for individual-
ized drug ranking in human immunodeficiency disease. It offers clinicians
a distributed virtual laboratory securely accessible from their hospitals and
institutes throughout Europe.

5.3.1 System Requirements

ViroLab’s research goal is to investigate novel computational methods and
techniques that support the development of a secure and user-friendly inte-
grated decision support system for physicians. We use emerging Grid tech-
nology to combine data discovery, data mining, statistical analyses, numerical
simulation and results presentation. Some of the main technical requirements
for building such a system include:

• efficient data management,
• integration and analysis,
• error detection,
• recovery from failures,
• monitoring and logging for process flows,
• distributed execution of data- and compute-intensive tasks,
• visualization and image processing on the data through the analysis
steps,

• metadata-based data access, authentication, and authorization.

For the system to support Grid-based distributed data access and compu-
tation, virtualization of its components is important (Figure 5.3). ViroLab in-
cludes advanced tools for biostatistical analysis, visualization, modeling, and



5.3 THE VIROLAB COLLABORATORY 99

simulation that enable prediction of the temporal virological and immuno-
logical response of viruses with complex mutation patterns for drug ther-
apy [134, 140].

Figure 5.3: ViroLab data flow schematic; manual wet lab is automated and virtualized,
and the resulting data is fed to anonymizing components, as well as directly to the De-
cision Support System, in order to be ranked. Simulation components enhance output
rankings, which are applied to rule-based algorithms and then fed back for improved
prediction of the virus’s drug sensitivity
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Virtual Organization

As elaborated in chapter 3, Grid computing is based on the central concept of
distributed Virtual Organizations that span multiple trust domains. Trust in
Grids is commonly established via a Public Key Infrastructure (PKI): every
entity in the system is issued with a "certificate" that links an identifier to a
piece of unique cryptographic data.
In Virolab we develop a distributed virtual organisation that binds the var-

ious components of the distributed VO. This binding layer spans a number of
geographically separated physical research institutions across Europe, includ-
ing five hospitals. ViroLab’s VO-based security infrastructure is based on Grid
middleware. This provides a number of interfaces for user-friendly and trans-
parent access to the ViroLab applications and resources, such as Grid portals.
Security is, naturally, an important concern. The sensitive nature of clinical
patient data, together with concerns that data and resources be made avail-
able in a timely fashion to just those who are authorized to access them, is
supportd by Grid authentication and authorization components which span
all aspects of the infrastructure. It is important to note, though, that in Vi-
roLab Grid security policy definition is left to the local owner’s trust policy.
VO members with access to the VOs resources can therefore use and share
distributed resources securely, leveraging single-sign on.

Decision Support System

A DSS and data analysis tools are at the center of the ViroLab distributed col-
laboratory. Such tools may estimate the sensitivity for available drugs by in-
terpreting a patient’s genotype using mutational algorithms that experts de-
veloped based on scientific literature, taking into account the published data
relating genotype to phenotype. This way, rankings are also based on data
from clinical studies of the relationship between the presence of particular
mutations and the clinical or virological outcome.
A number of bioinformatics software programs have been developed in

the last few years to support bioinformatics decision making in clinical envi-
ronments. A couple of examples of such systems are the Virtual Phenotype
(developed by Virco NV), and Retrogram †(developed by Virology Networks
BV in collaboration with parts of our research team). The output of these pro-
grams consists of a prediction of the drug sensitivity of the virus, generated
by comparing the viral genotype to a relational database containing a large

†U.S. Patent no. EPA 1176539, 2006
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number of phenotype-genotype pairs. The Retrogram decision software, in
particular, interprets the genotype of a patient by using rules developed by
experts on the basis of the literature, taking into account the relationship of
the genotype and phenotype. In addition, it is based on (limited) available
data from clinical studies and on the relationship between the presence of
genotype directly to clinical outcome. It is important to note, however, that
these systems focus on biological relationships and are limited to the role of
resistance. The next step is to use clinical databases and investigate the rela-
tionships between the viral resistance profile (mutational profile and/or phe-
notypic data) and therapy outcome measures such as amount of virus (HIV-
RNA) and CD4+cells.
In DSSs like the Retrogram, the primary goal of the data analysis is to

identify patterns of mutations (or naturally occurring polymorphisms) asso-
ciated with resistance to antiviral drugs and to predict the degree of in-vitro
or in-vivo sensitivity to available drugs from an HIV genetic sequence. The
statistical challenges in doing such analyses arise from the high dimensional-
ity of these data. A variety of approaches have been developed to handle this
type of data, including clustering, recursive partitioning, and neural infor-
matics. Neural informatics is used for synthesis of heuristic models received
by methods of knowledge engineering, and results of the formal multivariate
statistical analysis in uniform systems. Clustering methods have been used to
group sequences that are near each other according to some measure of ge-
netic distance: once clusters have been identified, recursive partitioning can
be used to determine the important predictors of drug resistance, as measured
by in-vitro assays or by patient response to antiviral drugs.

Interactivity and Process Flow

The availability of Grid infrastructures and tools for interactive applications
presents an important research opportunity, as we showed in chapter 3 in the
context of simulation-based medical informatics in the European CrossGrid
project. It consists of a unified approach for running interactive distributed
applications on the Grid by providing solutions to the following issues:

• automatic porting of applications to Grid environments,

• user interaction services for interactive startup of applications, online
output control, parameter study, and runtime steering,

• advanced user interfaces that enable easy plug-in of applications and
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tools, like interactive performance analysis combined with online moni-
toring,

• scheduling of distributed interactive applications,

• benchmarking and performance prediction,

• optimization of data access to different storage systems.

In ViroLab, an important issue is for users to be able to register and publish
derived data and processes and to keep track of the provenance of informa-
tion flowing through the generated pipelines, as well as accessing existing
(patient and scientific literature) data and acquiring new data from scientific
instruments. These domain-independent features can then be customized by
adding domain-specific components and semantic annotation of the compo-
nents and data being used. In order to automate the construction of process
flow applications, the system needs to generate ontological descriptions of ser-
vices, system components, and their infrastructure [42, 113]. Semantic data is
usually stored as a registry that contains Web Ontology Language (OWL) de-
scriptions of service class functionality, instance properties, and performance
records. The user provides a set of initial requirements about the process
flow, then the system builds an abstract process flow using the knowledge
about services’ functionality that service providers have supplied to the reg-
istry. Subsequently, the system must apply semantic information on service
properties, which results from analyzing the monitoring data of services and
resources, to steer running process flows that still havemultiple possibilities of
concrete Web service operations. The system can select the preferable service
class by comparing semantic descriptions of the available services classes and
matching the classes’ features to the actual requirements. ViroLab users can
therefore verify and identify the data’s origin and rerun experiments when
required. ViroLab extends this feature by categorizing the level of informa-
tion, including the data and process flows. The collected data-provenance
information is archived in ViroLab’s portal and accessible through search and
discovery methods.

5.3.2 Actor Analysis

We next present an actor-based representation of the main architectural com-
ponents for this bioinformatics use case. For this, we follow themodified actor
model presented in chapter 2.3 and used in chapters 3 and 4. We identify two
levels of abstraction, and start our analysis at the first one.
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Actor-based Grid Representation

The main components in this stage are a set of five actors, portal, virtual lab
manager, security manager, application manager and resource provider, as seen in
Figure 5.4, where:

Figure 5.4: ViroLab actor model, first level. Three composite and two simple actors are
contained, with portal as the interface between the systems and the user

• portal offers an external input interface to the system’s user, and two
output interfaces: one for interaction with the virtual lab manager, and
one to authenticate the user’s Grid credentials via the security manager,

• the composite virtual lab manager offers three input interfaces: one to
portal, one for authorization from the security manager, and one from ap-
plication manager providing the requested application. It also offers two
output interfaces to application manager and resource provider to provide
rankings and data, software or computational resources,

• application manager and resource provider provide their services to virtual
lab manager via their output interfaces.

We next focus on the composite portal, virtual lab manager and application
manager actor internals, which compose the second level of containment.
The first level’s portal actor (Figure 5.5) is composed of three components,

browser, web server, and servlet container:

• actor browser offers an interface for external input (the user input from
the first level), and an output interface for calling web server,
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Figure 5.5: ViroLab actor model, portal composite actor. The browser and servlet con-
tainer actors interface with the upper level of containment

• web server provides an output interface to servlet container for starting
interaction, in this case with the upper level’s virtual lab manager and
security manager.

The first level’s virtual lab manager (Figure 5.6) is composed by five com-
ponents: the session manager, provenance server, collaboration manager, runtime
engine and data handler actors:

Figure 5.6: ViroLab actor model, vl manager composite actor. This actor provides the
basic virtualization services required by the virtual laboratory, via a session manager
and runtime engine that interact with collaboration manager, data handler and provenance
server

• session manager provides interfaces from the upper level to the rest of the
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internal virtual lab manager actors, with three external input interfaces;
it also provides three output interfaces to provenance server for manag-
ing data provenance, collaboration manager for sharing session data, and
runtime engine for running the virtual lab facilities,

• runtime engine offers an input interface from collaboration manager for
data provision, provenance server and collaboration manager offer inter-
faces to provide their data to runtime engine, which provides interfaces
to the upper level for resource sharing and to data handler,

• data handler provide an output interface to the upper level for new rank-
ing provision.

Finally, the application manager actor (Figure 5.7) is composed by the scien-
tific tool actor, which offers an input interface to the virtual lab manager to get
new or current drug rankings, and an output interface to rule-based system for
current or improved rules for the ranking.

Figure 5.7: ViroLab actor model, application manager composite actor. The DSS applica-
tion is represented by the interaction between scientific tool and rule-based system actors

Actor Signatures

As in previous chapters, the actors’ port signatures are defined in XML Schema
actor interface definition described in chapter 2, mainly for matching of com-
posite actor signatures. A code fragment is shown in Figure 5.8. Here, a stage
is defined, containing actors virtual lab manager, security manager, application
manager, resource provider and portal. The composite portal is shown containing
actors browser, web server and servlet container. The figure shows portal’s and
browser’s matching signatures.
As stated previously, we compare the collaboratory actor patterns found

in this chapter with the ones found in chapters 3 and 4, and discussed in the
thesis conclusions.
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Figure 5.8: ViroLab actor port definitions: code fragment of the actor’s port signatures
for collaborative actor architecture described in Figures 5.6-5.9, showing matching por-
tal’s and browser’s init() inPort abstract interfaces

5.3.3 Grid-based Prototype Architecture

We instantiate the previous actor model into a system design that guarantees
the interaction between a user and running applications, similar to methods
used in real experiments, so the user can change a selected set of input data or
parameters at runtime. For instance, under a typical usage scenario in Vi-
roLab:

• A scientist from a clinical and epidemiological virology laboratory in
Utrecht, Netherlands securely accesses virus sequence, amino acid, or
mutations data from a hospital AIDS lab in Rome using Grid technology
components running in Stuttgart, Germany,

• the scientist applies quality indicators needed for data-provenance track-
ing using provenance-server components running in Krakow, Poland,

• researchers use this data as input to (molecular dynamics) simulations
and immune system simulations running on Grid nodes that reside at
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University College London and the University of Amsterdam,
• the virtualized DSS automatically derives meta rules,
• intelligent system components from Amsterdam use first-order logic to
clean rules, identify conflicts and redundancy, and check logical consis-
tency,

• the scientist validates new rules that the system automatically uploads
into the virtualized DSS,

• the system presents a new ranking.

We next elaborate on ViroLab’s architecture design, in terms of the sys-
tem’s virtual laboratory, presentation and virtualization viewpoints (Figure
5.9).
Our system’s architecture is based on the Grid concept of distributed vir-

tual organizations (VOs). Here, a number of components is virtualized and
distributed among VOmembers, supported by aMiddleware service layer that
provides basic services such as security. We distinguish a base Grid Resources
layer, where computational (computing elements within hospitals or research
centers) and data resources (storage elements where individual patient data,
medical knowledge data, intermediate experimental data, and so forth) is
archived. On top of this layer, a Virtual Laboratory layer encapsulates the run-
time system that interacts with the collaboration and data access components
via a session manager that interfaces to the provenance components. Finally,
Application and Presentation layers contain the user interfaces and individual
application interfaces to the core rule-based system used for initial decision
support and ranking, or to the scientific tools for the enhancement of such
rankings.

5.4 Discussion

5.4.1 Virtual Laboratory

In order to cover the temporal and spatial scales required to infer information
from a molecular level up to patient medical data, application-based multi-
scale methods are applied in ViroLab, where distributed simulation, statis-
tical analysis and data mining are combined and used to enhance the base
rule-based decision process. In this scenario, resources are widely distributed,
and the data processing requirements are highly variable, both in the type of
resources required and computational processing demands. We reuse Grid
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Figure 5.9: Layered representation of the ViroLab system architecture; distributed
resources (computing elements, data, and storage) that the biomedical applica-
tions use are coordinated with the Grid middleware and a virtualized runtime sys-
tem. Resources are automated and virtualized, and the resulting data is fed to
anonymizing components, as well as directly to the Decision Support System, see
http://www.virolab.org:8080/virolab/documents/description-of-work/

middleware from successful European projects to provide basic Grid services
for data management, resource management, and information services on top
of Globus middleware.

In order to support such a distributed infrastructure, we start with VO sup-
port for a DSS-centered prototype. Here, users are assisted by rules developed
by experts on the basis of available literature, taking into account the relation-
ship between relevant genotype and phenotype data. This way, we extend a
monolithic base DSS by virtualizing its basic building blocks, and distributing
the relevant components and data from clinical studies across the VO.
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5.4.2 Presentation

In the initial design phases we aim to maintain the same level of usability and
readability as the original Web version of Retrogram’s interface. This is ac-
complished by maintaining the same structure, but with some modifications
(Figure 5.10).

Figure 5.10: Web Retrogram interface; user enters Protease or Reverse Transcriptase
substitutions in order to get resistance interpretation rankings by login into the inter-
face, and accessing patient detail and laboratory information [22]

A Proxy method is implemented for accessing the web-based software
from mobile devices as well, where the Proxy server acts between the remote
server (the DSS) and a mobile device. Here, a navigation script in the Proxy
is responsible for the following:

• Take the patient data from the mobile user (i.e. patient detail, laboratory
information),

• create an HTTP communication with the remote server,
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• submit data to the remote server,
• take the result from the remote server,
• parse HTML code and retrieve only relevant information (i.e. drug rank-
ing, error messages, drug references etc.),

• send the wireless pages to the mobile device.

For the distributed and virtualized version used in ViroLab, an extra layer
of Grid services is implemented in order to allow access to both applications
and resources via a Grid portal. The portal serves as the central access point
where users are authenticated using single sign-on, and provides direct ac-
cess to the virtual laboratory infrastructure, runtime system and collaboration
support. Our aim is that the portal is based on standard portlet technologies,
using a set of portlet web applications that collaborate within the framework
and support standard Grid security. We initially extend the support for Grid
integration of the GridSphere portal framework [124]. In GridSphere, a col-
lection of Grid portlets provided as add-on modules form a cohesive end-user
environment for managing users, groups and supporting remote job execu-
tion, file staging and providing access to information services. GridSphere
provides two portlet implementations; one is the JSR 168 de facto portlet API
standard and the other is based upon the IBM WebSphere Portlet API. Grid-
Sphere supports the development of re-usable portlets and portlet services.
It includes a set of core portlets and portlet services that provide the basic
infrastructure required for developing and administering Web portals.

5.4.3 Virtualization and Collaboration

ViroLab infrastructure provides virologists with an advanced environment to
study trends on an individual, population, and epidemiological level. That
is, by virtualizing the hardware, compute infrastructure, and databases, the
virtual laboratory offers a user-friendly environment, with tailored process
flow templates to harness and automate such diverse tasks as data archiving,
integration, mining, and analysis; modeling and simulation; and integrating
biomedical information from viruses (proteins and mutations), patients (viral
load), and the literature (drug-resistance experiments). In ViroLab we need
access to different types of data resources via Grids. In order to achieve this
goal, we provide a way of querying, updating, transforming and delivering
data via web services in a consistent, independent way. In order to automate
archiving, integration, mining, as well as transparent access to applications,
we work with metadata and the data resources in which this data is stored,
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accessed via web services that can be combined to provide higher-level ser-
vices that support Grid-based data federation and distributed query process-
ing. We approach virtualization by allowing data and application resources, to
be accessed via web services. That is, a web service allows data to be queried,
updated, transformed and delivered, while integrating the data via services
to clients. In ViroLab we use the OGSA-DAI web services model, which can
be deployed within a Grid environment. This enables us to Grid-enable our
distributed data resources.
Collaboration technology aims to enhance the productivity and effective-

ness of multi-disciplinary biomedical research. To this effect, Grid technology
offers the possibility of leveraging computing tools into distributed collabora-
tive environments, or collaboratories.
The basic collaboration functionality for ViroLab users is offered by basic

portlet functionality, such as the one provided by the GridSphere installation.
This installation is composed of the GridSphere and the Google Web Toolkit
(AJAX development in Java), supporting a series of basic portlet templates.
This initial setup provides a series of services, such as portlet interface. That
is, a flexible XML-based portal presentation description can be easily modified
to create customized portal layouts, built-in support for Role Based Access
Control (RBAC), separating users into guests, users, administrators and super
users, and integrated JUnit/Cactus unit tests for complete server side testing
of portlet services including the generation of test reports. The basic collabo-
ration features are seamlessly integrated in the ViroLab Grid portal, offering
functionality such as interactive chat, file sharing and whiteboard applets.

5.5 Summary

In this chapter we proposed and developed parts of an integrative approach
to biomedical e-Science in general and to infectious diseases in particular,
based on a decision support system which compares patients’ viral genotype
to a distributed relational database containing a large number of phenotype-
genotype pairs. The decision software interprets a patient’s genotype by using
rules developed by experts on the basis of the literature, taking into account
the relationship of the genotype and phenotype. In addition, the output is
based on available data from clinical studies and on the relationship between
the presence of genotype and the clinical outcome.
With the increasing availability of genetic information and extensive pa-

tient records, researchers can now study diseases from the DNA level all the
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way up to medical responses. Resolving the long-standing challenges of tar-
geted treatments is coming within reach. It is necessary to provide integrating
technology to the medical doctors and researchers bridging the gaps in multi-
scale models, data fusion, and cross-disciplinary collaboration (Table 5.1).

Table 5.1: Snapshot of the integrative approach used for distributed collaborative de-
cision support in ViroLab. Data collection, virtualized application, data and compu-
tational resources are supported by a Grid infrastructure and a secure Grid virtual
organization

State of the art Contribution

Web-based monolitic decision sup-
port system

Grid-based virtual collaboratory

Tightly-coupled implementa-
tion

VO-based loosely-coupled im-
plementation

Object-oriented architecture Service-based architecture
Simple Web-based interaction Real-time collaboration and

provenance support
SSL-based access to data and
software

PKI-based access to virtual re-
sources (data, services, compu-
tational, instruments)

Monolitic software architecture System-level aproach to e-
Science

Although the ViroLab research is still preliminary, our initial work in-
dicates that our personalized drug ranking prototype is viable and extensi-
ble. The system remains under development, with new functionalities being
added from usability studies in a network of European hospitals.
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Conclusions

Virtual Organizations have the potential to change dramatically the way
we use computers to solve problems, much as the Web has changed how
we exchange information

—Ian Foster et al.
The Anatomy of the Grid: Enabling Scalable Virtual Organizations,

Int. J. High Perf. Comp. App., 2001. 15(3): pp. 200-222

6.1 Actor Comparison

The use of dynamic virtual organizations (VOs) offers users transparent and
secure concurrent access to large numbers of resources, which can be accessed
on the fly by large, distributed virtual machines. We argue in this thesis that
reasoning about architectures based on Grid virtual organizations requires ap-
proaches that reflect the resource dynamics natural to Grid virtual machines.
In chapters 3, 4 and 5 we approach the problem by the use of a mesoscopic
model of computation based on the classical actor model, as described in chap-
ter 2, based on a model which was originally designed for workflow support.
In this chapter we build on that design and prototyping experience with a
comparison of the actor components found in those chapters, in order to bet-
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ter understand component evolution and invariability via those actors’ hier-
archical composition and localized component interaction.
Actor models can be used to separate functionality from component inter-

action, using hierarchy refinement and component-based compositionality to
divide a model into nested sub-models. We used this approach in the gradu-
ally more complex case studies shown before for the identification of abstract
architectural components.
Figure 6.1 shows a number of high and low-level components which we

found in our work dealing with: a) component and object-based distributed data
access, b) highly-distributed problem solving environment and c) distributed collab-
oratory for biomedicine. In this comparison we identify, for instance, abstract
component mappings such as:

• System access mappings between: a) interface (user interface, session
manager, retriever, and patient info manager), b) interactor (grid por-
tal, data handler, and job manager), c) portal (browser, web server, and
servlet container),

• service mappings between: a) server (service provider, object broker, ob-
ject adaptor, and object creator) and broker, b) job manager (job submitter
and infrastructure monitor), data handler, and grid portal (data manager,
security provider, and application monitor), c) virtual lab manager (ses-
sion manager, runtime engine, data handler, collaboration manager, and
provenance server), resource provider, and security manager,

• application mappings between: a) client, b) simulator and visualizer, c)
application manager (rule-based system and scientific tool).

We find that composite higher-level actors in more complex systems such
as the c) distributed collaboratory for biomedicine abstracts components that are
presented in less complex systems. That is, e.g., a c) virtual lab manager ab-
stracts b) job manager, data handler, and grid portal functionalities via its session
manager, runtime engine, and data handler, and extends them via collabora-
tion manager, and provenance server components.
The actor model of computation for the representation of concurrent be-

haviour is quite useful for us to understand such patterns of distributed com-
ponent behaviour and how such components evolve and interact across levels
of complexity. For instance, in a)component and object-based distributed data ac-
cess analyzed in chapter 3, we find a simple architecture where actor interface
(responsible for the interfacing, data transfer and session management) may
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Figure 6.1: Abstract architectural actor models, from simpler to more abstract system
components as system complexity and functionality evolves

be accessed concurrently by a number of client actors that initialize interaction
or by server actors requesting data. The point in case is clearer in b)highly-
distributed problem solving environment architecture from chapter 4, where it is
important to note that the visualizer actor might be accessed concurrently by
the interactor and simulator actors, in the case where users may be getting inter-
active feedback from the simulation kernel and need to visualize this partial
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feedback for interacting with a number of running jobs, such as in the case
of parameter sweeping.

6.2 Discussion

Current work in the literature on how to extend system modeling to highly
distributed systems such as Grid architectures is by no means exhaustive. On
one hand, popular communications models such as message-passing offer a
powerful approach for modeling concurrent behaviour in Grids. Neverthe-
less, even though there is an important amount of work done to understand
message-passing, such as Petri nets [127], process calculi [128] and the actor
model [3], much work still is under way on how to apply them to Grid archi-
tecture modeling.
Triggered by advances in the state of the art in biomedical database, sim-

ulation, and visualization technologies, new architectures and infrastructures
have to deal nowadays with issues of:

• Secure data access across organizational domains,
• scalability capabilities to support services dynamically being added to
the changing infrastructure,

• on-line collaborative environments that allow biomedical scientists trans-
parent information exchange,

• support for simulation and visualization services,
• complex workflows that require interactive services with man-in-the-
loop steering of computation, visualization, and virtual data navigation.

In this work we proposed and validated a roadmap for the analysis of in-
formation models and architectures. We described a formal approach, based
on an actor model of computation, which was used for analyzing biomedi-
cal informatics case studies. We described the DICOM model and elaborated
on some of its most notable shortcomings by extending its functionality us-
ing object-oriented and component models for interoperability of data access.
We presented our experiments on complex biomedical problem solving envi-
ronment within interactive Grid infrastructures, where we use Grids for ad-
dressing our requirements for interactive biomedical applications in highly
distributed environments. Finally, we analyzed a distributed bioinformatics
support-decision system in which collaborative discourse among biomedical
researchers was a main area of concern.
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Our base requirements lead us to a set of research issues, which we ap-
proached by addressing a set of specific research objectives, as set forward in
the introduction to this thesis in chapter 1:

• Objective 1: To design software architecture models that support distributed
virtual laboratories for interactive collaboration (i.e., collaboratories), building
on the state of the art, which allow integration of distributed biomedical appli-
cations (simulation, visualization, decision support, and so forth).

• Objective 2: To identify software components for biomedical informatics that
should remain invariant against next generations of technology, and once they
are identified, to map them to distributed systems.

• Objective 3: To prototype such systems and reason about them, using run-
time components that enable the virtualization of distributed resources, as well
as their integration and secure access, leveraging advanced tools for the sup-
port of dynamic trust domains, collaborative analysis, modeling, simulation,
visualization, data management, and process flow.

We achieved successful completion of all three stated initial objectives by
developing amethodology for the study of Grid architectures for biomedicine,
and using it for identifying and prototyping such systems. We used such a
methodology for the analysis and validation of distributed collaboratories, by
analyzing incrementally complex biomedical problem-solving environments.
For the first use cases, the proof of concept prototypes showed that when

modeling DICOM-based services using a component model, relatively small
time delays are found in the data inquiry/transmission processes, even though
the new components ran on top of open services. This allowed for transac-
tional, secure and persistent objects being accessible by applications that have
no information on where to find the needed object implementations to invoke
specific methods in them. That is, by extending standard relational facilities
like the ones used in the DICOM information model to object models and
implementing them in XML, we achieved not only transparent but also effi-
cient transparent data access to PACS deployed across networks of distributed
hospitals.
Since infrastructure interoperability is a big issuewhen dealingwith highly-

distributed applications, we experimented with Grid infrastructure interoper-
ability. We found that, given the relatively immaturity of the core transfer util-
ities in Globus, job submission and data management services running on the
SEs used for our experiments were quite stable, even though the resources are
shared across different middleware architectures. Our experiments showed
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fairly good interoperability for data access, except when using a GT4 client
accessing a LCG2.0 gsiftp server, for reasons discussed earlier.
We experimented with a concise set of benchmarking results for the char-

acterization of computational Grid resources in terms of the performance of
CPU, main memory and interconnects, for a biomedical application for the
simulation of blood flow. In order to improve our resource selection process,
we improved the benchmarks with on the run performance monitoring. We
ran a number of tests where we found out issues related to, e.g., load balanc-
ing problems in the simulation application. In some cases the output could
be quite slow and consume a significant fraction of the total computing time.
This way, the performance results obtained from application benchmarking
(coupled with real-time resource monitoring) proved quite more useful for
Grid resource selection than the regular resource information provided by
standard Grid information services to resource brokers. This offered good
potential for optimizing our biomedical application for more efficient runs.
Also, configuration issues with the Grid tools are quite complex and criti-
cal. For instance, the functionality between gridmapfiles seemed to be highly
prone to multiple synchronization issues. Also, on the Grid information sys-
tem side, we noted that when the information system is queried often, as is
the case with production-type of runss, noticeable information loss is experi-
enced. This seems to be a known problem, and one of the reasons for active
research in the field.
We have shown how in the understanding of processes from bioionfor-

matics to health informatics, from molecule to man, distributed computing in
general and Grid technology in particular can play a crucial role. We found
that in order to cover the huge time and spatial scales required to infer in-
formation from a molecular (genomic) level up to patient medical data, we
need to apply multi-scale methods where simulation, statistical analysis, data-
mining is combined in an efficient way. Moreover, such required integrative
approach requires distributed data collection (e.g. HIV mutation databases,
patient data, literature reports, etc.) and a virtual organization (physicians,
hospital administration, computational resources, etc.) to support it. The ac-
cess to and use of large-scale computation (both high performance as well as
distributed) is essential since many of the computations involved require near
real-time response, and are too complex to run on a personal computer or per-
sonal digital assistant. Furthermore, data presentation is crucial in order to
lower the barrier of actual usage by the physicians, here the Grid technology
(server-client approach) can play an important role.
In this thesis we found that the actor components identified by our innovative ap-
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proach represent a mesoscopic level of architectural representation, capturing relevant
microscopic component details, while still representing the macroscopic overview of
the system architecture. Our solution to the stated problem provided a reusable ap-
proach that included a formal description, a set of design primitives that includes a
visual syntax and interface language description that we can use for representing not
only the high-level macroscopic compositionality, of UML, but also the well-defined
semantics concurrency support of low-level microscopic approaches like the ones of-
fered by Petri Nets and process calculi. Furthermore, this approach showed us a grad-
ual evolution in biomedical informatics modeling constructs from simpler monolitic
to more abstract components.

6.3 Future Work

The future of biomedical informatics depends in large part on integrated soft-
ware problem solving environments that combine distributed resources (hard-
ware, software, data, instruments) belonging to multiple stakeholders. The
key enablement is the capability of bringing together scientists from diverse
fields to aggregate their skills and bring new system-level approaches to a new
kind of science. Creating new kinds of computational environments requires
major breakthroughs in software architectures, such as seamless interoperabil-
ity among architectural components, easy and secure access to new toolboxes
such as Grid technologies for researchers via user friendly and scalable sys-
tems, and more powerful implementations of computational algorithms that
leverage the distributed and concurrent characteristics of Grid technologies.
In Grids, as opposed to classic distributed computing modeling, codesign

is quite essential, and that modeling the flow of data is just as important as
modeling the state. For future work, we believe that investigating Hamilto-
nian cost functions to improve efficency of flow processes, the evaluation of
design patterns for Grids, and the effects of unbounded indeterminacy are of
great importance to the field. We find that recent approaches to measure Grid
application performance [102, 159] and resource selection [93] are good first
steps in the way, but complex challenges still exist.
There is of course room for enhancements to the model and current exper-

imental testbed, e.g., scientific collaboration support required to process the
variety of data and information generated from a number of ViroLab applica-
tions as well as data providers and hospitals. For instance, in addition to the
basic requirements of voice and video support among scientists, we will work
on scientific collaboration support for the sharing of drug rankings (current
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rankings and new rankings resulting from the new applications), collabora-
tive validation of drug rankings (once validation of a new ranking has been
performed, users may want to discuss and share their findings with relevant
stakeholders), and feedback from experts via links to the workflow engine
(collaboration tools may allow the direct and instant communication with ex-
perts during and at all steps of scientific workflow execution).
Furthermore, important work related to large-scale biomedical e-Science

such as the initial results of the Physiome Project ∗, coupled with the com-
plementary work by biomedical Grid initiatives such as the HealthGrid † ini-
tiative’s SHARE action plan for a European e-Health area and the Dutch Na-
tional Research Initiative for Computational e-Science [141] provide a fertile
and huge field for research and exploration.

∗http://www.physiome.org
†http://www.healthgrid.org
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English Summary

The future of biomedical informatics depends in large part on integrated
software problem solving environments that combine distributed resources
(hardware, software, data, instruments) belonging to multiple stakeholders.
The key enablement being the capability of bringing together scientists from
diverse fields to aggregate their skills and bring new system-level approaches
to a new kind of science.
Creating new kinds of computational environments requires major break-

throughs in software architectures, such as seamless interoperability among
architectural components, easy and secure access to new toolboxes such as
Grid technologies for researchers via user friendly and scalable systems and
more powerful implementations of computational algorithms that leverage
the distributed and concurrent characteristics of Grid technologies.
During this work we have learned to create a novel software architecture

for biomedical informativs research. We have addressed the requirements put
forward by our biomedical scientists, andmade advances to the state of the art
in interactive Problem Solving Environments ultimately aimed at researchers
and clinicians. Our modeling approach to Grid architectures allows for a clear
representation of diverse roles taken by actors in accordance with their inter-
actions with other actors in the system, as well as actor composition, which
can be easily decomposed in sub-actors to any level of atomicity. Most im-
portantly, this model allows to represent the concurrent processes that occur
in interactive applictaions on the Grid (such as the concurrent access to one
resource by a number of VO members, or the concurrent interaction of a user
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and simulator with a visualizer) that are normally represented as sequential
or just parallel processes. We investigate issues related to dynamic sharing
of digital resources such as computational power, data, applications and in-
struments for supporting the acquisition of biomedical information. We pro-
pose that computer science in general, and the Grid computing paradigm in particu-
lar, provide the language and tools needed to study and understand modern complex
biomedical systems. We identify a set of observations about the current state
of the art in technology for the support of biomedical informatics research.
We proposed and validated a roadmap for the analysis of information models
and architectures. We described a formal approach, based on an actor model
of computation, which was used for analyzing biomedical informatics case
studies. We described the DICOM model and elaborate on some of its most
notable shortcomings, by extending its functionality using object-oriented and
component models for interoperability of data access, and presented our ex-
periments on complex biomedical problem solving environment within inter-
active Grid infrastructures, where we use Grids for addressing our require-
ments for interactive biomedical applications in highly distributed environ-
ments. Finally, we analyzed a distributed bioinformatics support-decision
system in which collaborative discourse among biomedical researchers was
a main area of concern.
Complex interactivity using distributed biomedical data clearly requires

new approaches. Not only interconnectivity, but also interoperability of com-
ponents and tools are, in our experience, non-trivial issues. We require cre-
ative approaches that identify environments, architectural constructs and tools
for reasoning about the system. Towards this goal, we identify a methodology
for the analysis and validation of distributed, concurrent component-based
collaboratories.
In chapter 3 we started with a relational-based model of medical image

representation, extended the architecture, prototyped with an object-oriented
approach based on XML open technologies, and interfaced DICOM informa-
tion services for enterprise interoperability. There, issues raised by, e.g., the
concept of complex recursion within DICOM SR and the existence of artifi-
cial DICOM constructs such as Macro were important when the model was
prototyped. For a more complex case study, we started with a distributed
framework and extended the relational data access model with component
and object technologies for distributed object-oriented transparent data ac-
cess. The handling of the medical image information took place by defining
the methods for the objects that use some existing functionality, and extend-
ing them with pure CORBA services and hybrid Java and CORBA bindings.
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In order to provide richer DICOM functionality, the acquisition of study hier-
archy and information was enhanced with the implementation of libraries for
DICOM-file field parsing andmapping to CORBA objects, to allow amore dy-
namic flow of the case and image information. In chapter 4 we move on to the
simulation-centric Virtual Radiology Explorer application to find better solu-
tions for treatment of vascular diseases. We extended the original VRE’s vir-
tual simulated environment by first drafting a high-level architecture, which
was then analyzed using our actor model for prime components and or actors
mapping of their abstract interfaces. The prototyped system included the vir-
tualized VRE components, as well as a VO-based infrastructure that allow the
scalable and transparent access to image segmentation services, simulation
and visualization software, hardware resources for the performance-intensive
simulation and visualization routines, and most importantly, a set of Grid ser-
vices that handled access, security, file transfer, monitoring and many more
infrastructure-related support. Finally, in chapter 5, we presented the Grid-
based architecture of a virtualized decision support system that compares pa-
tients’ viral genotype to a distributed relational database containing a large
number of phenotype/genotype pairs. The decision software interprets a pa-
tient’s genotype by using rules developed by experts on the basis of the lit-
erature, taking into account the relationship of the genotype and phenotype.
In addition, the output is based on available data from clinical studies and on
the relationship between the presence of genotype and the clinical outcome.
We showed how in the understanding of processes from bioionformatics to
health informatics, from molecule to man, distributed computing in general
and Grid technology in particular can play a crucial role. We found that in
order to cover the time and spatial scales required to infer information from a
molecular (genomic) level up to patient medical data, we need to apply multi-
scale methods where simulation, statistical analysis, data mining is combined
in an efficient way. Moreover, such required integrative approach requires dis-
tributed data collection (e.g. HIV mutation databases, patient data, literature
reports, etc.) and a virtual organization (physicians, hospital administration,
computational resources, etc.) to support it. The access to and use of large
scale computation (both high performance as well as distributed) is essential
since many of the computations involved require near real time response and
are to complex to run on a personal computer or personal digital assistant.
Our modeling approach to Grid architectures allows for a clear representa-

tion of diverse roles taken by actors in accordance with their interactions with
other actors in the system, as well as actor composition, which can be easily
decomposed in sub-actors to any level of atomicity. Most importantly, this
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model allows to represent the concurrent processes that occur in interactive
applications on the Grid (such as the concurrent access to one resource by a
number of VOmembers, or the concurrent interaction of a user and simulator
with a visualizer) that are normally represented as sequential or just parallel
processes. In Grids, as opposed to classic distributed computing modeling,
codesign is quite essential; modeling the flow of data is just as important as
modeling the system state. For future work, we believe that investigating
hamiltonian/cost functions to improve efficency of Grid flow processes, the
evaluation of design patterns for Grids, and the effects of unbounded inde-
terminacy are of great interest to the field. We find that recent approaches to
measure Grid application performance and resource selection are good first
steps in the way, but complex challenges still exist. Also, important work
related to large-scale biomedical s-Science such as the initial results of the
Physiome Project, coupled with the complementary work by biomedical Grid
projects such as the HealthGrid initiative’s SHARE action plan for a European
e-Health area provide a fertile and huge field for research and exploration.
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De toekomst van de biomedische informatica is in grote mate afhankelijk
van geïntegreerde probleemoplossende omgevingen (‘Problem Solving Envi-
ronments’ of ‘PSE’) die verschillende hulpbronnen (hardware, software, data,
instrumenten), behorend aan verschillende belanghebbenden, samenbrengen.
Het grote belang hiervan is met name dat het mogelijk maakt dat weten-
schappersmet verschillende achtergronden hun kennis en vaardigheden com-
bineren en op deze manier een geheel nieuwe benadering scheppen voor een
nieuwe wetenschap.
Het creëren van nieuwe klassen van computationele omgevingen vereist door-
braken in software architecturen, die naadloze interoperabiliteit tussen archi-
tecturale componenten mogelijk maken, evenals gemakkelijke en veilige toe-
gang via gebruikersvriendelijke en schaalbare systemen tot nieuwe gereed-
schappen zoals Grid technologieën, en krachtiger implementaties van com-
putationele algoritmen die de gedistribueerde en concurrente eigenschappen
van het Grid benutten.
In de loop van dit werk hebben we geleerd om een nieuwe software ar-

chitectuur voor biomedisch informatica onderzoek te maken. We hebben de
vereisten, zoals naar voren gebracht door onze biomedische wetenschappers,
in acht genomen en vooruitgang geboekt in de ontwikkeling van interactieve
probleemoplossende omgevingen, die uiteindelijk bedoeld zijn voor onder-
zoekers en clinici. We hebben een model ontwikkeld voor Grid-gebaseerde
applicaties gebaseerd op zogeheten “actoren”. Dit maakt het mogelijk de ver-
schillende rollen van deze actoren, en hun interacties met de andere actoren in
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het systeem te beschrijven. Ook kunnen actoren worden ontbonden in “sub-
actoren” tot elk gewenst niveau van detail. Het belang van dit model is dat
het het mogelijk maakt de concurrente processen die plaats vinden in interac-
tieve applicaties op het Grid correct weer te geven. Voorbeelden hiervan zijn
de gelijktijdige toegang tot een hulpbron door verschillende leden van een
virtuele organisatie (VO) en de gelijktijdige interactie van een gebruiker met
een simulatie- en een visualisatiegereedschap. We onderzoeken de problemen
bij het dynamisch delen van digitale hulpbronnen, zoals rekentijd, data, ap-
plicaties en van instrumenten die het verkrijgen van biomedische informatie
kunnen ondersteunen. Wij stellen dat informatica in het algemeen, en het Grid
computing paradigma in het bijzonder, de benodigde talen en gereedschappen leveren
om moderne complexe biomedische systemen te bestuderen en te begrijpen.
We doen een aantal observaties over de huidige staat van technologis-

che ontwikkelingen met betrekking tot de ondersteuning van biomedisch in-
formatica onderzoek. We presenteren en valideren een routekaart voor de
analyse van informatie modellen en architecturen. We geven een beschrijv-
ing van het DICOM model en lichten enkele van de meest opvallende teko-
rtkomingen toe door de functionaliteit uit te breiden, gebruik makend van
object-georiënteerde component modellen voor interoperabiliteit en data toe-
gang. In onze experimenten over complexe biomedische probleemoplossende
omgevingen binnen interactieve Grid infrastructuren, gebruiken we Grids om
aan onze vereisten voor interactieve biomedische applicaties in zeer gedis-
tribueerde omgevingen te voldoen.
Tenslotte analyseren we een gedistribueerd bio-informatisch beslissing-

sondersteunend systeemwaar samenwerking tussen biomedische onderzoek-
ers de focus is.
Complexe interactiviteit, in combinatie met gedistribueerde multidimension-
ale biomedische gegevens vereist evident nieuwe benaderingen. Niet alleen
interconnectiviteit, maar ook interoperabiliteit tussen componenten en gereed-
schappen zijn, naar onze ervaring, geen triviale zaken. Er is behoefte aan
creatieve benaderingen die omgevingen herkennen, architecturale construc-
ties en gereedschappen voor het redeneren over het systeem. Met dit doel
voor ogen identificeren we een methode voor het analyseren en valideren van
gedistribueerde, concurrente, component-gebaseerde collaboratoria.
In hoofdstuk 3 beginnen we met een relationeel model van medische beel-

drepresentatie, breiden we de architectuur uit, en maken een prototype met
een object georiënteerde benadering gebaseerd op XML open technologieën
om interoperabiliteit van DICOM informatie diensten tussen ondernemingen
te geven. Hierbij zijn problemen die het gevolg zijn van bijvoorbeeld het con-
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cept van complexe recursie binnenDICOMSR en het bestaan van kunstmatige
DICOM begrippen zoals Macro van belang bij het ontwikkelen van een pro-
totype van het model. In een meer complexe case study, beginnen we met een
gedistribueerd framework en breiden het relationele model voor data toegang
uit met component en object technologieën voor gedistribueerde, transparante,
object georiënteerde data toegang. De behandeling van de medische beeldin-
formatie vind plaats door het definiëren van de methoden voor de objecten
die gebruik maken van bestaande functionaliteit, en deze uit te breiden met
pure CORBA services en hybride Java en Corba verbindingen. Om een verri-
jkte DICOM functionaliteit te verschaffen, is de acquisitie van informatie over
de gegevens en hun onderlinge afhankelijkheid uitgebreid met de implemen-
tatie van bibliotheken voor de parsing van velden in DICOM-bestanden en
vertalingen naar CORBA objecten, om een meer dynamisch verloop voor de
use case en beeld informatie toe te staan.
In hoofdstuk 4 gaan we verder met de simulatie-gerichte Virtual Radiology
Explorer (VRE) applicatie die erop gericht is betere behandelingen voor vas-
culaire aandoeningen te vinden. We breiden de oorspronkelijke VRE virtuele
gesimuleerde omgeving uit door eerst een high-level ontwerp te schetsen,
dat we daarna analyseren met ons actor model voor primaire componenten
en/of actor equivalenten van hun abstracte interfaces. Het prototype van
het systeem bevat de gevirtualiseerde VRE componenten, met daarnaast een
VO-gebaseerde infrastructuur. Deze infrastructuur verschaft schaalbare en
transparante toegang tot diensten voor beeldsegmentatie, simulatie- en vi-
sualisatiesoftware, hardware bronnen voor de rekenintensieve simulatie- en
visualisatieroutines, en vooral, tot een reeks van Grid services die toegang,
beveiliging, bestandsoverdracht, monitoring en vele andere infrastructuur-
gerelateerde diensten leveren.
Tenslotte, presenteren we in hoofdstuk 5, een Grid-gebaseerde architec-

tuur voor een gevirtualiseerd beslissingsondersteunend systeem voorHIV dat
het virale genotype van een patient vergelijkt met een gedistribueerde rela-
tionele database van grote aantallen fenotype/genotype paren. De besliss-
ingsondersteunende software interpreteert het genotype van een patient door
regels te gebruiken, ontwikkeld door experts op basis van de literatuur, die de
relatie tussen genotype en fenotype in acht nemen. Daarnaast is het resultaat
gebaseerd op beschikbare gegevens van klinische studies en de relatie tussen
de aanwezigheid van genotype en de klinische uitkomst.
We laten zien hoe in het doorgronden van processen van bioinformat-

ica tot medische informatica, van molecuul tot mens, van gedistribueerde
berekeningen in het algemeen en Grid technologie in het bijzonder van cru-
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ciaal belang kunnen zijn. We vinden dat om de benodigde temporele en
ruimtelijke schalen voor het abstraheren van informatie op een moleculair
(genetisch) niveau tot het niveau van medische gegevens van patiënten af
te dekken, multi-schaal methoden toegepast moeten worden waarbij simu-
latie, statistische analyse en “data-mining” efficiënt worden gecombineerd.
Bovendien vereist zo’n integratieve benadering een gedistribueerde verza-
meling van gegevens (bijv. HIV mutatie databases, patiëntgevens, literatu-
urverslagen enz.) en de ondersteuning door een virtuele organisatie (artsen,
ziekenhuis administratie, computationele bronnen enz.). De toegang tot, en
het gebruik van, grootschalige rekencapaciteit (zowel snelle clusters als ook
gedistribueerde rekencapaciteit) is essentieel omdat veel van de benodigde
berekeningen een bijna real-time respons vereisen en te ingewikkeld zijn om
op een PC of PDA te worden uitgevoerd. Onze benadering voor modelleren
op Grid architecturen verschaft een duidelijke representatie van diverse rollen
gekozen door actoren in overeenstemming met hun interacties met andere ac-
toren in het systeem en de compositie van actoren, welk simpel kan worden
onderverdeeld in sub-actoren tot elk gewenst niveau van detail. In Grids is
het, meer nog dan bij klassieke gedistribueerde computer modellen, essen-
tieel gegevensstromen en de toestanden van het systeem in samenhang te on-
twerpen. Voor toekomstig werk zijn we van mening dat het onderzoeken van
Hamiltonian/kost functies om de efficiëntie van de stroom processen te ver-
beteren, de evaluatie van ontwerp patronen voor Grids, en de effecten van
onzekerheden van groot belang zijn voor het vakgebied. We vinden dat recent
ontwikkelde benaderingen voor Grid-applicatie prestatiemetingen en bronse-
lectie goede eerste stappen zijn, maar er zijn nog veel complexe uitdagingen.
Daarnaast verschaft belangrijk werk gerelateerd aan grootschalige biomedis-
che e-Science projecten, zoals de eerste resultaten van het Physiome Project,
gekoppeld met het aanvullende werk door Grid initiatieven zoals het SHARE
actieplan voor een Europees e-Health gebied van het HealthGrid initietief, een
groot en vruchtbaar veld voor onderzoek en ontdekkingen.
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