
Journal of Clinical Monitoring and Computing (2005) 19: 263–278
DOI: 10.1007/s10877-005-0673-2 C© Springer 2005

A GRID-BASED HIV EXPERT SYSTEM
Peter M.A. Sloot,1 Alexander V. Boukhanovsky,2

Wilco Keulen,3 Alfredo Tirado-Ramos,1 and
Charles A. Boucher4

From the 1Section Computational Science, University of
Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands,
2Institute for High Performance Computing and Information Sys-
tems, Bering St, 38, St. Petersburg, Russia, 3Virology Educa-
tion, 69042 Utrecht, The Netherlands, 4University Medical Center,
University of Utrecht, 3508 GA Utrecht, The Netherlands.

Received and accepted for publication June 30, 2005.

Based on “A Grid-based HIV Expert System”, by P.M.A. Sloot, A.V.
Boukhanovsky, W. Keulen, and C.A. Boucher, which appeared in
the IEEE/ACM International Symposium on Cluster Computing
and the Grid, Cardiff, UK, May 9-12, 2005. c©2005 IEEE.

Address correspondence to Peter M.A. Sloot, Section Computa-
tional Science, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands
E-mail: sloot@science.uva.nl

Sloot P MA, Boukhanovsky AV, Keulen W, Tirado-Ramos A, Boucher
CA. A grid-based HIV expert system.

J Clin Monit Comput 2005; 19: 263–278

ABSTRACT. Objectives. This paper addresses Grid-based in-
tegration and access of distributed data from infectious dis-
ease patient databases, literature on in-vitro and in-vivo phar-
maceutical data, mutation databases, clinical trials, simulations
and medical expert knowledge. Methods. Multivariate analyses
combined with rule-based fuzzy logic are applied to the inte-
grated data to provide ranking of patient-specific drugs. In addi-
tion, cellular automata-based simulations are used to predict the
drug behaviour over time. Access to and integration of data is
done through existing Internet servers and emerging Grid-based
frameworks like Globus. Data presentation is done by standalone
PC based software, Web-access and PDA roaming WAP access.
The experiments were carried out on the DAS2, a Dutch Grid
testbed. Results. The output of the problem-solving environ-
ment (PSE) consists of a prediction of the drug sensitivity of the
virus, generated by comparing the viral genotype to a relational
database which contains a large number of phenotype-genotype
pairs. Conclusions. Artificial Intelligence and Grid technology
are effectively used to abstract knowledge from the data and pro-
vide the physicians with adaptive interactive advice on treatment
applied to drug resistant HIV. An important aspect of our research
is to use a variety of statistical and numerical methods to iden-
tify relationships between HIV genetic sequences and antiviral
resistance to investigate consistency of results.

KEY WORDS. computational Grids, HIV, PSE, expert system, arti-
ficial intelligence, bio-statistics.

1. INTRODUCTION

1.1. Motivation

Forty two million people worldwide have been infected
with HIV (Human Immunodeficiency Virus) and 12 mil-
lion have died, over the last 20 years. Figure 1 shows the
pan-epidemic extent of HIV infections.

Effective antiretroviral therapy has lead to sustained HIV
viral suppression and immunological recovery in patients
who have been infected with the virus. The incidence of
AIDS has declined in the Western world with the intro-
duction of effective antiretroviral therapy, though questions
on “When to start treatment? What to start with? How
to monitor patients?” remain heavily debated. Adherence
to antiretroviral treatment remains the cornerstone of ef-
fective treatment, and failure to adhere is the strongest
predictor of virological failure. Long-term therapy can
lead to metabolic complications. Other treatment options
are now available, with the recent introduction to clini-
cal practice of fusion inhibitors, second-generation non-
nucleoside reverse transcriptase inhibitors, and nucleotide
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Fig. 1. Worldwide spread of HIV infections, history and near future per-
spective.

reverse transcriptase inhibitors. The sheer complexity of
the disease, the distribution of the data, the required auto-
matic updates to the knowledgebase and the efficient use
and integration of advanced statistical and numerical tech-
niques necessary to assist the physician motivated us to ex-
plore the novel possibilities supported by Grid technology.

In this position paper we describe ongoing research in
our 3 laboratories (Utrecht, St. Petersburg and Amsterdam)
addressing the development of a Grid based medical deci-
sion support system. The goal of the research is to investi-
gate novel computational methods and techniques that sup-
port the development of a user friendly integrated support
system for physicians. We use emerging Grid-technology
to combine data discovery, data mining, statistical analyses,
numerical simulation and data presentation [1].

The paper is organized as follows. The rest of Chapter
1 describes the background of HIV research and a proto-
typical rule-based approach to data analysis. In chapter 2
we give an overview of the two computational techniques
we study to understand the temporal variability of HIV
populations through stochastical modeling, the evolution
of HIV infection and the onset of AIDS through Cellu-
lar Automata (CA) modeling. Chapter 3 describes a first
approach to advanced data presentation through roaming
devices such as Personal Digital Assistants (PDAs), as well as
our Virtual Organization-based (VO) Grid approach. Fi-
nally, Chapter 4 offers a brief discussion on our conclusions
and future work.

1.2. Background

1.2.1. Clinical aspects of HIV

The clinical management of patients infected with Human
Immunodeficiency Virus (HIV) is based on studies on the

pathogenesis of the disease and the results of trials evaluat-
ing the effects of anti-HIVdrugs. Retrospective analysis of
large cohorts has identified laboratory markers for disease
progression, such as the amount of virus (HIV-RNA) and
the number of T helper cells (CD4 + cells) in blood. In ad-
dition the results of prospective drug trials have generated
data on effectiveness of individual drugs and drug combi-
nations and the effect of drug resistant viruses on therapy
outcome. Currently clinicians are limited in the practical
use of this information because in most cases they are only
provided with statistical relationships between individual
parameters and disease or therapy outcome. Large data sets
have not been analyzed and made available in such a way
that it allows a clinician to use the available data in more
clinical settings. The availability of large databases and the
development of innovative data mining approaches create
the opportunity to develop systems which allow the prac-
ticing clinician to determine the risk profile for disease
development, or the change or success for a given regimen
for his individual patients. Such a system will determine the
rate of success for different drug regimens by taking into
account the effect and interaction of all relevant laboratory
and clinical parameters and by comparing the results for
similar patients available in the database.

Currently there are fifteen drugs licensed for treatment of
individuals infected with HIV. These drugs belong to two
classes, one inhibiting the viral enzyme reverse transcrip-
tase and another inhibiting the viral protease. These drugs
are used in combination with therapy to maximally inhibit
viral replication and decrease HIV-RNA to below levels of
detection levels (currently defined as below 50 copies per
ml) in blood. Treatment with drug combinations is suc-
cessful in inhibiting viral replication to undetectable levels
in only 50% of the cases. In the remaining 50% of cases
viruses can be detected with a reduced sensitivity to one
or more drugs from the patients’ regimen. The molecular
base for resistance has been, and still is, focus of extensive
research. Over 80 amino acid positions in the viral enzyme
reverse transcriptase (RT) and 40 positions in the protease
enzyme can undergo changes when exposed to selective
drug pressure in vitro or in vivo. For some drugs, at cer-
tain positions, a change towards a specific new amino acid
is seen. At other positions several alternative amino acids
may appear and cause (variable) levels of resistance to one
or more drugs. In theory, therefore, an infinite number
of combinations of amino acid changes could appear and
cause resistance in vivo. Preliminary clinical observations
however show that specific amino acid changes at a limited
number of positions and a limited number of combina-
tions prevail. In addition to changing drug sensitivity some
amino acid changes may also influence the replication po-
tential of HIV. Amino acids selected initially during a failing
regimen cause resistance to the drugs the patient is taking,
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but at the same time may decrease the capacity of the virus
to replicate. Changes appearing later do not function to
further increase resistance but merely function to restore
the capacity of the virus to replicate (“viral fitness”). Sev-
eral clinical studies have been performed recently to evalu-
ate the clinical benefit of resistance-guided therapy. These
studies show that a better virological response is obtained
in patients who are failing their therapy, when their new
regimen is chosen on the basis of their resistant profile.
In three out of the four studies from last year the results
showed that if new regimens were selected on the basis of
the mutations (viral resistance genotype) the results were
better as compared to standard care approaches. Currently,
the basis for clinical interpretation of the viral genotype is
based on data sets relating mutations to changes in drug sen-
sitivity, and/or data sets directly relating mutations present
in the virus to clinical responses to specific regimens. Ini-
tially, experts compared the observed mutations to lists of
published sequences taken from the literature, and based
on this comparison would select a regimen.

1.2.2. Prototype support system

Recently, first generation bioinformatics software pro-
grams have been developed to support clinicians. Examples
of such systems are the Virtual Phenotype developed by
Virco NV, and a first generation decision support system
(Retrogram TM) developed by Virology Networks BV in
collaboration with parts of our research team. The output
of these programs consists of a prediction of the drug sensi-
tivity of the virus generated by comparing the viral geno-
type to a relational database containing a large number of
phenotype-genotype pairs. The Retrogram decision soft-
ware interprets the genotype of a patient by using rules de-
veloped by experts on the basis of the literature, taking into
account the relationship of the genotype and phenotype.
In addition, it is based on (limited) available data from clin-
ical studies and on the relationship between the presence
of genotype directly to clinical outcome. It is important
to realise however that these systems focus on biological
relationships and are limited to the role of resistance. The
next step will be to use clinical databases and investigate the
relationship between the viral resistance profile (mutational
profile and/or phenotypic data) and therapy outcome mea-
sures such as amount of virus (HIV-RNA) and CD4+ cells.
A summary of the flow of data is shown in Figure 2.

1.2.3. Data collection

Large high quality clinical and patient databases are used to
explore the relationships described above and to develop a
first prototype matching system.

Fig. 2. From molecule to man: Hierarchical data flow model for infectious
diseases.

The Viradapt study showed that the virological response
was better in the patient group in which genotype and rule-
based interpretation was used as compared to the standard
of care arm [2]. On the basis of these results, a more elabo-
rate decision support software system (Retrogram version
1.0) was built in collaboration with Virology Networks
B.V. This system ranks the efficacy of the antiretroviral
drugs within each class. The ranking is based on expert
interpretation of two types of data. The software system
estimates the drug sensitivity for the fifteen drugs by in-
terpreting the genotype of a patient by using mutational
algorithms. These mutational algorithms are developed by
a group of experts on the basis of the scientific literature,
taking into account the published data relating genotype to
phenotype. In addition, the ranking is based on data from
clinical studies on the relationship between the presence of
particular mutations and clinical or virological outcome.

The Athena cohort is a large Dutch observational clini-
cal cohort study aiming at the surveillance of antiretroviral
treatment supported by the Dutch government. The co-
hort consists of 3000 patients from whom clinical, viro-
logical, immunological and data on drug side effects are
centrally collected through a decentralised data entry sys-
tem. Within this cohort 600 patients are studied intensively,
phenotypic and genotypic data, drug levels and CD4+ and
HIV-RNA patterns are collected. From two large interna-
tional trials (sponsored by Roche Pharmaceuticals) eval-
uating the effect of a new fusion inhibitor drug (T20),
representing 1000 patients from whom also phenotype,
genotype, viral fitness, drug levels as CD4+ and HIV-RNA
patterns will be collected. The third database will be from
the international multi-center Great study sponsored by
Virology Networks BV, within this study the value of the
Retrogram decision support program is evaluated and sim-
ilar parameters a described above will be collected, within
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this study 360 patients will be enrolled. Another dataset
will come from the Italian Musa study, in this trial data will
be collected from 450 patients followed over a year. Entry
point to the trial is failing a fist or second regimen, subse-
quently patients will be genotyped and a new regimen will
be selected on the basis of Retrogram 1.4 or the Virtual
Phenotype from Virco (Belgium).

Throughout the duration of the project we will collect
additional datasets. These datasets may serve to further re-
fine our models and first version software and may also be
use to perform validation studies.

1.2.4. Data analysis

The primary goal of the data analysis is to identify patterns
of mutations (or naturally occurring polymorphisms)
associated with resistance to antiviral drugs and to predict
the degree of in-vitro or in-vivo sensitivity to available drugs
from an HIV genetic sequence. The statistical challenges
in doing such analyses arise from the high dimensionality
of these data. A variety of approaches have been developed
to handle this type of data, including clustering, recursive
partitioning, and neural informatics. Neural informatics is
used for synthesis of heuristic models received by methods
of knowledge engineering, and results of the formal mul-
tivariate statistical analysis in uniform systems. Clustering
methods have been used to group sequences that are
“near” each other according to some measure of genetic
distance [3]. Once clusters have been identified, recursive
partitioning can be used to determine the important pre-
dictors of drug resistance, as measured by in-vitro assays or
by patient response to antiviral drugs. Principle component
analyses can help to identify what are the most important
sources of variability in the HIV genome. An important
aspect of our research is to use a variety of methods to
identify relationships between HIV genetic sequences and
antiviral resistance to validate the consistency of results.

The molecular sequences of the viral enzymes reverse
transcriptase and protease are the micro parameters in the
model. In theory an infinite number of combinations of
mutations could appear and cause (variable) changes in viral
drug sensitivity and viral replication capacity (See also Ta-
ble 1). Clinical datasets however show that specific amino
acid changes at a limited numbers of positions in a lim-
ited number of combinations prevail. HIV-RNA and CD4
are the primary parameters determining disease outcome.
HIV-RNA, the amount of HIV-RNA genomic copies per
ml plasma, has been validated as being highly predictive of
clinical outcome. HIV-RNA and CD4+ cell numbers are
now the standard endpoint in clinical trials for approval of
new antiretroviral drugs. A patient’s HIV-RNA may range
between a few hundred to millions of RNA copies per

Table 1. Parameters for the data analyses. Here the hierarchical ap-
proach shown in Figure 2 is extended to detail the content of the
parameters

Micro Parameter Protease
Mutations
Reverse
Transcriptas
Mutations

Primary Parameter HIV-RNA CD4
Drug
Resistance

Macro Parameter Meta Parameter:
Virological

Viral Fitness

Meta Parameter:
Clinical

Weight
Opportunistic
Infections and
Tumors
Survival

Intervention Parameter Drug Dosage
Bio-availability
of Drug/Drug
Level

ml plasma. The CD4+ cell numbers in peripheral blood
range typically between zero and thousand. Whereas the
predictive clinical value of both parameters has been deter-
mined initially in untreated individuals, they have also been
shown to be of predictive value also for patients under an-
tiretroviral therapy. Recently observations have been pub-
lished indicating that in some patients under highly active
antiretroviral therapy (HAART) a disconnect may occur
between the response in HIV-RNA and in CD4 counts.
Typically, in these patients a rise in HIV-RNA as conse-
quence of incomplete inhibition of viral replication under
therapy is not paralleled by a continuous decrease in CD4
counts. This disconnect has been explained by a decrease
in the viral replicative capacity (‘viral fitness’) which leads
to a decrease in capacity to lower CD4 counts.

The patient’s weight and secondary opportunistic infec-
tions and/or malignancies are parameters that determine
disease outcome and survival time. Currently there are fif-
teen drugs licensed for treatment of individuals infected
with HIV: More than ten inhibitors have been developed
which inhibit the reverse transcriptase process. These in-
hibitors can be classified in two sub-categories that dif-
fer in the way they inhibit the RT-enzyme, nucleoside
(analogue) RT-inhibitors (NRTI) and the non-nucleoside
RT-inhibitors (NNRTI). These compounds inhibit the
protease enzyme, which acts much later on in the HIV
replication cycle than reverse transcriptase.

The protease is responsible for cleaving a long poly-
protein into smaller functional proteins. The overall ex-
posure to antiretroviral drugs has been shown to be an
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important factor for the degree of success for a given
therapy. The overall exposure can be captured by parame-
ters as dosage and bio-availability which will codetermine
the drug level within an individual patient. Given the rela-
tionships between exposure and antiviral efficacy, variabil-
ity in drug levels (which may be due to differences in patient
adherence to their regimens) will contribute to virologi-
cal and immunological outcome. Individuals with relatively
low exposure are more likely to experience virological fail-
ure than those with a high exposure.

2. METHODS AND MATERIALS

2.1. Modeling the dynamics and temporal variability
of HIV-1 populations

In addition to rule based and parameter based decision sup-
port we developed statistical models and cellular automata
based models to study the dynamics of the HIV popula-
tions. These 2 numerical models run on Grid-resources.
The output is integrated with the medical support system
and accessible to the end-user. In this paragraph we briefly
outline the two computational methods. Details are beyond
the scope of this paper; we refer to the references provided.

2.1.1. A cellular automata model to study the evolution
of HIV infection and the onset of AIDS

A cellular automata model to study the evolution of HIV
infection and the onset of AIDS is developed. The model
takes into account the global features of the immune re-
sponse to any pathogen, the fast mutation rate of the HIV,
and a fair amount of spatial localization, which may occur
in the lymph nodes. The dynamics of the cellular automata
requires high throughput computing, which is provided by
the resource management of the Grid. In this section, we
employ non-uniform Cellular Automata (CA’s) to simulate
drug treatment of HIV infection, in which each compu-
tational domain may contain different CA rules, in con-
trast to normal uniform CA models. Ordinary (or par-
tial) differential equation models are insufficient to de-
scribe the two extreme time scales involved in HIV in-
fection (days and decades), as well as the implicit spatial
heterogeneity. Zorzenon dos Santos et al. [7] reported a
cellular automata approach to simulate three-phase pat-
terns of human immunodeficiency virus (HIV) infection
consisting of primary response, clinical latency and onset
of acquired immunodeficiency syndrome. We developed a
non-uniform CA model to study the dynamics of drug
therapy of HIV infection, which simulates four-phases
(acute, chronic, drug treatment responds and onset of

AIDS). Our results indicate that both simulations (with and
without treatments) evolve to the same steady state. Three
different drug therapies (mono-therapy, combined drug
therapy and HAART) can also be simulated in our model.
Our model for prediction of the temporal behaviour of the
immune system to drug therapy qualitatively corresponds
to clinical data.

Pseudo Code 1a: HI Model (Adapted from Zorzenon dos
Santos R. M., Phys. Rev. Let. 2001). H = healthy cell,

A1 and A2 are infected cells at different time steps.

Assume: {H, A1(t), A2(t+ τ ), D}; 1 time-step = 1
week; Simulation of lymph-node;
Moore neighbourhood and square
lattices used

Rule 1: (a) If it has at least one infected-A1
neighbor, it becomes infected-A1

(b) If it has no infected-A1 neighbor but
does have at least R (2 < R < 8)
infected-A2 neighbors, it becomes
infected-A1

(c) Otherwise it stays healthy
Rule 2: An infected-A1 cell becomes infected-A2

after τ time steps
Rule 3: Infected-A2 cells become dead cells
Rule 4: (a) Dead cells can be replaced by healthy

cells with probability prepl in the next step.
(b) Each new healthy cell introduced may

be replaced by an infected-A1 with
probability p infec

This CA (Pseudo-code 1a) mimics in a simple way the
dynamical properties of a HIV infection; next we intro-
duce drug therapy into the model by modelling a response
function Presp and changing only rule 1.

Pseudo Code 1b: Advanced HI Model, taking into
account drug therapy effects.

Rule 1:
(a) If there is one A1 neighbor after the starting of drug

therapy, N(0 ≤ N ≤ 7) neighbor healthy cells become
infected-A1 in the next time steps with probability presp.
Otherwise, all of eight neighbors become infected-A1.

N represents effectiveness of drugs.
N = 0: no replication;
N = 7: less effective for the drug.
Presp (t − ts ) represents certain response function of drug

effects over the time steps (t). The ts is the starting of
treatment.
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The main success of the presented CA model is the ad-
equate modeling of the four-phases of HIV infection with
different time scales into one model. Moreover, we could
also integrate all of the three different therapy procedures.
The simulations show a qualitative correspondence to clin-
ical data. During the phase of drug therapy response, tem-
poral fluctuations for N > 3 were observed, this is due to
the relative simple form of the response distribution func-
tion (Pdis)applied to the drug effectiveness parameter N
at each time-step. The simulation results indicate that, in
contrast to ODE/PDE, our model supports a more flexible
approach to mimic different therapies through the use of
mapping the parameter space of Pdis to clinical data. There-
fore there is ample room to incorporate biologically more
relevant response functions into the model. The data inte-
gration required for the CA, the parametric computation
and the data presentation are supported by the Grid.

2.1.2. Multivariate stochastic modeling

The modeling of Human Immunodeficiency Virus
(HIV-1) genotype datasets has a goal to identify patterns
of mutations (or naturally occurring polymorphisms) as-
sociated with resistance to antiviral drugs and to predict
the degree of in-vitro or in-vivo sensitivity to available drugs
from an HIV-1 genetic sequence. The statistical challenges
in doing such analyses arise from the high dimensionality
of these data. Direct application of the well-known genetic
approaches [5] to analysis of HIV-1 genotype results in a lot
of problems. Principal difference is in the fact that, in HIV
DNA analysis, the main scope of interests is the so-called
relevant mutations – a set of mutations, associated with the
drug resistance. These mutations might exist in different
positions over the amino-acid chains. Moreover, the sheer
complexity of the disease and data require the development
of the reliable statistical technique for its analysis and mod-
eling. A multivariate stochastic model for describing the
dynamics of complex non-numerical ensembles, such as
observed in the (HIV) genome, has been developed in [6].
This model was based on principle component analyses for
numerated variables. Generally speaking, the interpretation
of numerated variables in terms of relevant mutations is not
clear. Below we develop this model directly for the ensem-
ble of relevant mutations in the RT and protease parts of
the HIV-1 genome. Each element of the ensemble is pre-
sented as the cortege �k = {ξ j }nk

j=1, k = 1, M with the
variable dimension nk-the total number of the mutations
in the gene. Each value ξk is a literal index and corresponds
the position and new value of the amino acid (e.g., 184 V,
77I, etc.). It allows to associate each mutation with the cat-
egorical random variable i ∈ 1 . . . K , where K is the total

number of possible mutations. Each sub sample of genomes
with a fixed number of mutations n = const may be con-
sidered as the realizations of a categorical random vector.

The representation above is based on the proximity to the
“wild-type” virus and takes into account only the relevant
mutations in a genome. It allows for significant compression
of the DNA representation and simplifies the interpretation
of the results.

Principle of the modeling approach. The joint variability of dif-
ferent mutations in the HIV-1 genomes is a complicated
phenomenon. The dimension of the probabilistic charac-
teristics is high, and its analytical investigations and inter-
pretation are hard. Hence, for the studying of HIV-1 pop-
ulations we use a computational statistical approach that
allows to numerically generate an ensemble with the same
probabilistic properties by means of a Monte-Carlo pro-
cedure. This is a well-known powerful method to study
complex system variability.

The idea of the stochastic modeling is shown in the
Figure 5. It is based on the evolutionary hypothesis, consid-
ering the group with n +1 mutations as subgroup of group
with n mutations in a previous step. For each gene the tran-
sit from n to n +1 mutation groups is driven by a stochastic
operator D(n+1), which defines the mutations on the n + 1
step, when the mutations on the previous n steps are known.
The initial step of the stochastic procedure begins from the
whole ensemble of wild-type viruses. The number of the
genomes that has been mutated at each step of the stochas-
tic procedure is in accordance with Mn = ρn M, where ρn

are the probabilities of the occurrence of genotypes with n
mutations in a total population of M genes.

The stochastic operator D may be considered as a “black
box”. It is formalized in terms of the conditional probabil-
ities of the occurrence of mutation ξi , if the mutation ξ j

arise in the previous step of the generation. For genotypes
with 2 mutations only the values Di j are the conditional

Fig. 3. Temporal behaviour of the CD4 count, with modeled Brownian
movement for lymphocytes [8].
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Fig. 4. As in Figure 3, with additionally modeled mono therapy in week
300 [8].

Fig. 5. Principle of the modeling.

probabilities of the pairs. In this case the matrix {Di j } is
the transition Markov probability matrix, containing the
conditional probabilities for simple Markov chains with
the number of these states corresponding to quantity of
the relevant mutations. In more complicate cases, where
n > 2, the probability matrix {Di j} consists of the con-
ditional probabilities to meet mutation ξ j in certain gene,
when the mutation ξi is present.

This approach allows us to reduce the complicated sta-
tistical description of the dataset to a rather simple model,
using only three probabilistic distributions as the initial pa-
rameters of the model: distribution of number n of the
mutations ρn ;

• distribution P (1)
ξ for the relevant mutations in the group

n = 1;
• transient probability matrix D.

All these parameters might be identified on the sample
datasets of the HIV-1 population.

Identification of the model. For the identification of parameters
of the model, a large database of HIV-infected patients, col-
lected over several years in USA, is used [4]. These databases
contain genotypes of 43620 patients examined from Au-
gust 9, 1998 to May 5, 2001. We observed 59 different
mutations in the RT genome, including 17 mixed muta-
tions, and 77 different mutations in the protease genome,
including 34 mixed mutations.

Distribution ρn of number of mutations. The practice of HIV
treatment however, has shown that the variability of the
number of mutations n is high, due to the complexity of
the drug combinations that has been applied. The sample
estimate of distribution ρn of the number of mutations in
protease is shown in the Figure 6. It is seen, that the distri-
butions have a clear first peak (n = 1), and a shelf (or second
peak), corresponding to n = 3 ÷ 5. Therefore we expect
that there are two groups of genomes in the database, cor-
responding to the low and high number of mutations. The
possible interpretation of the discovered bi-modal distri-
bution is that we have two groups of patients. One group
is the “new” patients who had one or two treatments, thus
their genotype contains relative small numbers of muta-
tions. The second group is the “old” patients, which have
a long treatment history, or new patients, infected through
treated HIV-1 patients [15].

Distributions of the relevant mutations Pξ . Distribution ρn al-
lows describe the variability of the groups of the “new”

Fig. 6. Statistical description for distribution of mutations in Protease.
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and “old” patients, only. For a more detailed study of the
virus mutations driving by the certain drugs combinations,
the probabilities of occurrence of the relevant mutations
ξ should be considered. They are estimated by the sample
frequencies:

Pξ = {Number of genes with mutation ξ}
M

. (1)

Here M is the total number of genomes in the dataset.
Equation (1) describes the marginal impact of each muta-
tion in the total population, without any information about
number and occurrences of other mutations. The prob-
abilities of the most significant relevant mutations ξk (in
decreasing order of its probability) are shown in Figure 6.
The marginal estimates of Pξ over the total dataset show
only general impacts of the mutations. For a detailed
analysis of its behavior we also consider the occurrences
P (n)

ξ of mutations in the groups of genotypes with exactly
n mutations. These values were computed also by means
of Equation (1), where M

def= Mn = ρn M – the number of
genes with n mutations in a database. The sample estimates
of these occurrences are also shown in the Figure 1. It is
clearly seen that the inputs of some mutations are rather dif-
ferent for different n, both for the protease and RT parts of
the genome. E.g., for RT, for n = 1, the mutations 184 V
and 103 N have the main input. The distribution P (1)

ξ is the
limit distribution from the procedure shown in Figure 5.

From Figure 1 we also observe that the total sum∑
k Pξk > 100%, excluding case n = 1. This demonstrates

that the analysis of the marginal mutations is not enough
for general statistical description of all DNA ensemble vari-
ability, because some positions of DNA may be statistically
dependent [15], especially in relation to viral fitness. Hence,
the joint characteristics of its variability must be taking into
account.

Transient probability matrix D.The conditional probability of
the occurrence of mutation ξi , if the mutation ξ j arises
from the previous steps of the generation, is estimated by:

Di j = {Number of genotypes with mutations ξi and ξ j simult&aneously}
{Number of genotypes with mutation ξi } .

(2)

The dimensionality of the related matrix, obtained from
Equation (2), may be rather high. In order to decrease
the dimensionality we consider the algebraic technique of
orthogonal expansion, applied to transient probability ma-
trices [16].

D = ��1/2�. (3)

Table 2. Normalized (%) values of the expansion coefficients λk in
Equation (4)

# of PC

Part of the genome 1 2 3 4 5 6 7

RT 61.3 8.2 5.4 2.8 2.1 1.7 1.6
Protease 55.0 6.3 4.5 4.2 3.4 2.7 2.4

where � are the eigenvectors of matrix DDT , and �-of
matrix DT D. It allows considering the coefficients ak =√

λk as the principal components (PC) [13], and represents
the probability (2) as a series:

Di j =
∑

k

√
λkφi kψ j k. (4)

The values λk shows the part of the probability, explained
by k-th PC. The sum of the first k-th coefficients λk may
be interpreted as a measure of convergence of the series
(4). In Table 2 the values of the first 7 λk for the RT and
protease parts of the HIV-1 genome are shown. These data
were obtained for the total database. It can be seen that the
series (4) converges rather fast in both cases: e.g. for the RT
part only the first term of the series explain more 60% of
conditional probability (the first five terms explain 80%).

Let us consider the normalized bases φ̃i k = λ0.25
k

φi k, ψ̃ j k = λ0.25
k ψ j k . It allows to present the terms in Equa-

tion (4) as the pi j
k = φ̃i kψ̃ j k and interpreted these values

as the independent factor loadings, driving the changes of
the conditional probability Di j over all the mutations ξi , ξ j

in the database. For example, in the Figure 7 the estimates
of the first basic functions are shown for RT and protease
parts of the genotype (the input of multiplication of func-
tions are in the Table 2). It is clearly seen, that the first
term pi j

1 = φ̃i1ψ̃ j1 reflects the total occurrence of the mu-
tations in a genotype (see Figure 6): for the mutations with
the maximal occurrences the input to conditional proba-
bilities of its pairs is also high.

Model validation. The simulation model is based on the
ρn , P (1)

ξ , D distributions of the mutations only. No infor-
mation of more complicate mechanisms (distributions of
pairs, triples, etc.) has been used for this identification.

The main goal of the verification is the possibility to
reproduce these features of the ensemble through the de-
pendencies formalizing the matrix D. We compared the
total occurrences of all mutations in genotypes, estimated
on the initial and simulated samples, see also Figure 6 (solid
line). It is seen, that the results of the simulation and sample
are rather close.
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Fig. 7. Orthogonal basic functions of expansion (4) for transient probability
matrix.

The error of the simulation increases proportionally to
absolute value of the occurrences. Nevertheless, for some
cases the error of the simulation is larger then the boundary
of the confidence interval. This systematic error may be

Table 3. Trend analysis of the parameters of the HIV-1 genotype population (F is compared with Fisher’s test F(1,31,95%) = 4.14)

Occurrence of mutations, % pg , %, Coefficients
√

λk , Equation (4)

Parameter 77I 90M 10I 71V Equation (5) k = 1 k = 2 k = 3

Protease part
Mean 37.78 32.69 27.97 23.64 48 5.78 1.67 0.83
a (1/month) 0.20 −0.43 −0.72 0.32 0.74 0.13 0.06 0.06
R2 0.68 0.91 0.61 0.82 0.67 0.80 0.73 0.54
F 16.7 77.6 9.6 47.1 64.0 23.6 26.8 11.8

RT part
41L 215Y 103N 67N k = 1 k = 2 k = 3

Mean 32.86 31.37 30.66 27.21 47 6.65 2.20 2.08
a (1/month) −0.51 −0.50 −0.32 −0.39 0.49 0.11 0.17 0.07
R2 0.88 0.93 0.88 0.84 0.75 0.68 0.78 0.71
F 57.4 98.7 59.8 41.8 94.3 21.4 36.1 25.3

explained by possible variations in matrix D for groups of
the “old” and “new” patients.

Application to forecast of HIV-1 evolution in time. The evolu-
tion of total world populations of HIV-1 and the associ-
ated changing of the related drug resistance levels should
be taken into account. The stochastic models, used to de-
scribe the HIV-1 genotype ensemble in terms of parame-
ters and shown in the Figure 5, can be used for the analysis
of its temporal variability during the observation period
(VIII.1998–V.2001). The temporal variability of the data
may be considered in terms of the samples of the seasons
(3-months periods). The volumes of seasonal samples are
from 1500 till 4500 genotypes; that is enough for obtain-
ing the stable estimations. Only the hypothesis of linear
trends is considered: ξ (t ) = a t + b + δ(t ), where a is the
most interesting parameter—value of the trend, b is the
shift parameter, and δ is the white noise. In the Table 3 the
integral parameters of trends of the various parameters of
the HIV-1 population (mean value of the parameter, value
of the trend, determination coefficient R2 and the sample
value of F-criterion) are shown.

Trends of single mutations occurrence Pξ . The database allowed
us to investigate trends in codon frequency in the period
of 1998 till 2001. Results for Protease and RT are shown
in Table 3. The majority of the mutations in the genotype
have a negative trend, only 77I in Protease has significant
positive trend.

Trends of bi-modal distribution for number of mutations in geno-
types ρn . For the decreasing of the data dimensionality and
the statistical discrimination of two groups in the dataset
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we consider the model of the mixture of two Bernoulli
distributions:

ρn = pg Ck
m1

q k
1 (1 − q1)m1−k

+ (1 − pg )Ck
m2

q k
2 (1 − q2)m2−k (5)

where pg is an input of the first group of mutations (and
pg is an input of the second group, m 1, m 2-are maximal
numbers of mutations in groups and q1, q2-are probabil-
ities to find each one (arbitrary) mutation in the groups.
The use of Bernoulli distribution logic (based on the rep-
etition of the independent events) is more close to the
description of the mutation process, then the Poisson dis-
tribution, generally applying to description of rare events.
Temporal variability of the parameters (p, q1, q2, m 1, m 2)t
of the ρn approximation by Equation (5) are shown in
Table 3. In both cases only the parameter pg (weight
of the left part for group of m1 mutations) has a clear
significant positive trend. For protease value pg increased
from 39% in Summer, 1998 to 62% in Summer 2001
(with average increment a = 0.74% per month). Taking
into account trends for separate mutations we observed a
“degradation” of genotypes: the number of patients with
simple genotypes (small number of mutations) is growing
but a number of patients with big count of mutations is
decreased.

Trends of transient probabilities D. The analysis of the trends of
parameters for distribution (1) shows that the input of the
first group of mutations with low number n is increased.
Hence, it may be a consequence of the temporal variations
of the interdependencies between different mutations, gov-
erned by the developing of the drug therapy. For the anal-
ysis of these hypothesis, let us consider the trends for the
matrix D, Equation (2). Taking into account the expan-
sions (3, 4), we may reduce the complicate problem for
joint trend analysis for components Di j to the procedure
of trend analysis for independent time series – components
of expansions (4). From the Table 3 it can be seen, that all
the components have a clear positive trends. Taking into
account the shape of first bases functions, see Figure 7, it is
clear, that generally the joint probabilities Di j of the mu-
tations is increased also; moreover, the power of increasing
corresponds to the total occurrences of the mutation in the
ensemble.

The discrimination of the groups of “old” and “new”
patients in terms of bi-modal distribution (5) allow to fore-
cast the growth of the total number of HIV-infected people
in time:

N(t ) = Nnew
patients

(t ) + Nold
patients

(εt ), ε � 1. (6)

Fig. 8. Qualitative forecast of HIV-1 population grows. 1 – mean value
(7), 2 – 90% confidence interval.

Here ε – is the slow time parameter, which shows the rapid
increasing of the new patients group in comparison with
the old patients. The part of “new” patients of the sample
is pg (old patients−(1 − pg )) from (5). Hence, the growth
curve is:

N(t ) = Nold
patients

(0)
[

1 + pg (t )
1 − pg (t )

]

, (7)

where pg (t ) = p0 + a g t-is the linear trend with the pa-
rameters from Table 3, and N old

patients
(0) is the initial value of

“old” (treated) patients on the beginning of the forecast.
In Figure 8 the “crucial” forecast of the HIV-1 popula-

tion growth are shown. It is based on the fact that altogether
42 million people worldwide have been infected with HIV
at the beginning of XXI century, and 12 million have died
over the last 20 years. Moreover, not taken into account
is the arising of new drugs and different prophylactic and
social preventive activities for restriction of HIV-1 infec-
tion. Really, this result is qualitative only; for quantita-
tive conclusions the more sophisticated research should be
done.

3. RESULTS

3.1. Data presentation: Roaming PDA access

3.1.1. User Scenario

RetroGramTM (www.retrogram.com) is a unique HIV-
genotype expert based interpretation software program,
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which weighs the effect of specified genotype changes on
clinical drug activity. It accepts a list of substitutions to the
protease and reverse transcriptase genes with respect to the
NL4-3 reference strain. This is accomplished by running
a “simulation”, which applies some hundred rules relat-
ing substitutions on the HIV genome to knowledge of
effects on drug response. The latter comes from over hun-
dreds of references from the clinical literature. The rules are
checked against the reported substitutions, and each drug is
evaluated for its suitability. In a later stage we added Web-
access where a Web interface is used to submit the input
and take out the output. We want to make the simulations
wireless-accessible. Developing a wireless Internet version
from scratch will not be cost-efficient and causes maintain-
ability problems. For example, the rules mentioned above
are often changed and these changes have to be reflected
in both versions. Furthermore, for privacy and security
reasons the developer is not granted access to the source
code of the “simulation”. Thus, it is much more conve-
nient to have wireless access to the Web-based interface.
In this case the “simulation” take places in a unique server
and privacy and security are guaranteed. A typical user
scenario is described below and the associated graphical
representation of the Retrogram Web access is given in
Figure 9.

After the user has successfully logged in, the Patient Detail
page is displayed (Figure 10). The form, taking place in
this page is used to enter the personal data of the patient.
Two fields are required in the form, Patient ID and Data of
Sample.

According to the information taken from the laboratory
the user enters the laboratory test results (i.e. Protease or
RT substitutions) for the patient in the Laboratory Informa-
tion page. Next a script invoked on the server does the
following:

Fig. 9. Web-based Retrogram use case sequence.

Script 1: Server validation script

Validate inputs:
Validate Protease or RT substitutions if they conform

to certain rules.
A single substitution should be represented by an

integer (for position in the gene) and a letter (for the
amino acid). The position in the gene is in the rage
from 1 to 99 for Protease position and from 1 to 599
for RT position. The amino acid code is one of the
following codes: A C D E F G H I K L M N P Q R
S T U V W Y.

Submit the inputs to the “simulation” program and
take back the drugs ranking result.

Show the Drugs ranking result in the ‘HIV Therapy
decision support’ screen:

After applying certain rules on the laboratory test
result return to the final drugs ranking or drug’s level
of suitability indication as follows:

A (green): This drug can be used
B (yellow): Consider use if no class A drug available
C (amber): Consider use if no class A or B drug

available
D (red): Consider use if no class A, B or C drug

available
U (grey): Unranked, insufficient data available

In the ‘HIV Therapy decision support’ screen, clicking on
any drug name in the ranking lists will display a list of avail-
able references from the scientific literature supporting the
particular ranking for that drug. In the ‘HIV Therapy deci-
sion support’ screen, clicking on the ‘Interpret substitution’
button will show classification of the patient’s substitutions
into relevant, natural or additional.

3.1.2. Roaming, wireless access

In the designing phase of wireless versions of the application
the constraints of the mobile devices should be considered.
At the same time we have tried to maintain the same level
of usability and readability as in the original Web version.
This is accomplished by maintaining the same structure as
that in the Web but with some modifications. For example,
the Patient detail form has many fields and putting them
in one screen would cause problems in the usability of
the program (it’s supposed that the mobile device has a
resolution comparable to a normal PDA, i.e., something
around 160 × 160 pixels). Thus we use three screens for
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Fig. 10. Web Retrogram: user enters patient substitutions (left), drug ranking results (right).

Patient Detail data. The Patient Detail Web page has 2
required fields. We put them in the first screen after the
‘login’ screen. In this way, if the user is not interested in
entering optional data, she can directly go to the Laboratory
Information.

Proxy method Implementation. A Proxy method is imple-
mented for accessing the web-based software from mobile
devices. The Proxy server takes places between the remote
server (the Retrogram server) and the mobile device. A
mininavigator script developed in the Proxy is responsible
for the following:

• Take the patient data from the mobile user (i.e. patient
detail, laboratory information)

• Create an HTTP communication with the remote
server,

• Submit data to the remote server. These data are basically
the input for the Retrogram ‘simulation’.

• Take the result from the remote server (HTML code
generated from retrogram.asp script),

• Parse HTML code and retrieve only relevant informa-
tion (i.e. drug ranking, error messages, drug references
etc.). It uses this relevant information to build wireless
pages (i.e. WML page in case of WAP or Web-clipping
page).

• Send the wireless pages to the mobile device.

The Proxy is implemented using PHP: Hypertext Pre-
processor as a server-site scripting language [9–11] running
on the Apache Web server [12].

Two versions are developed using the Proxy method:
WAP version and web clipping. If a user wants to enter the
‘patient details’ fields, he has to move from one screen to
the other and come back again. The fields already filled in
the previous screens should not be lost. Thus maintaining

the client’s state is necessary. In the WAP case we simply
use cookies but in web clipping cookies are supported only
in PALM OS 4.0 version or higher. For this reason the
“hidden field” method is used this is another method used
for maintaining state in the Internet. The following figures
are the user interfaces that have been captured. They track
the user’s path through the running of the application, as
shown in Figures 11(a) and 11(b), where the user enters
the patient’s details and accesses ranking results.

J2ME Implementation. The same user interface is applied in
the J2ME implementation. There are two main differences
between the J2ME implementation and the Proxy one:

1. J2ME enables the device to communicate directly to
the Retrogram server without an intermediate Proxy

2. In J2ME the client’s interface is contained within the
device. In the Proxy method, every time the interface
should be changed, the Proxy is responsible for gener-
ating a new page.

The following illustrates the necessary steps one should
take in order to fetch an HTML page generated from a
script in the remote host. Specifically this is an example
illustrating how the user can login to a script in the Ret-
rogram server and extract the cookie from the header re-
sponse:

1. Open an HTTP connection
2. Open an input stream
3. Make an HTTP POST request
4. Extract the cookie from the header response
5. Close the connection

In the J2ME implementation of Retrogram the entire
client’s interface takes places in the device. The connection
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Fig. 11. (a) User corrects the input and submit again (left), drug ranking re-
sults (right). (b) Users clicks to the drug ‘indinavir’ (left), references supporting
this ranking (right).

to the server is established in the following cases: user lo-
gin, with connection with the server is necessary in order
to validate the user and/or password. The user submits the
username and password, and the application judges them
for their correctness by scanning the HTML response from
the Retrogram server. The user submits the patient’s lab-
oratory information data. The application should connect
to the server in order to submit the data, take the result
(HTML format) and extract the drugs ranking. Next the
user looks for the references that suggest a certain drug
ranking. The database with all the references exists in the
Retrogram server, therefore the connection is necessary.
The application submits to a Retrogram script the cookie
and the name of the drug. The drug references are given
back from the server in HTML format. The application

Fig. 12. J2ME method; user enters patient’s substitutions (left), drug ranking
results (right).

should clean up the HTML tags and show the references
as plain text. Finally the user looks for classification of the
patient’s substitutions. This classification is part of the Ret-
rogram ‘simulation’ and thus the connection to the server
is still necessary. In Figure 12 we illustrate the process of
taking the drugs ranking using the J2ME method.

Currently we have the J2ME version in use for differ-
ent users to study the usability and extendibility. More
details on the implementation can be found in reference
[13].

3.2. Virtual laboratory infrastructure

3.2.1. A virtual organization for retrogram-centered workflow

Grid technology is a major cornerstone of today’s com-
putational science and engineering, with its basic unit of
Grid organization called the Virtual Organization (VO).
A VO is a set of Grid entities, such as individuals, appli-
cations, services or resources, which are related to each
other by some level of trust. In the most basic example,
service providers would only allow access to the mem-
bers of the same VO. We are currently building a dis-
tributed Grid-based overall decision support infrastructure
to support the Retrogram-centered workflow shown in
Figure 13.

This VO will offer a Grid virtual laboratory that will
assist users in the interpretation the genotype of a patient
by using rules developed by experts on the basis of the lit-
erature, taking into account the relationship between the
genotype and phenotype. The workflow is based on highly
distributed available data from clinical studies and on the
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Fig. 13. A Retrogram-centered workflow.

relationship between the presence of genotype and the clin-
ical outcome. In order to cover the fast temporal and spatial
scales required to infer information from a molecular (ge-
nomic) level up to patient medical data multi-scale methods
are applied, where simulation, statistical analysis and data
mining are combined and used to enhance the rule-based
decision. In this scenario, information sources are widely
distributed, and the data processing requirements are highly
variable, both in the type of resources required and the pro-
cessing demands. Experiment design, integration of infor-
mation from various sources, as well as transparent schedul-
ing and execution of experiments will be supported by this
support system based on distributed Grid middleware. The
DAS2 testbed (Netherlands) will initially provide the ad-
ditional computational power for our compute intensive
jobs. We will reuse Grid middleware from successful Euro-
pean projects such as CrossGrid (www.crossGrid.org) and
VL-e (www.vl-e.nl) to provide basic Grid services of data
management, resource management, and information ser-
vices on top of Globus. For transparent use of this infras-
tructure we will build a presentation layer that will pro-
vide a user-friendly interface to both medical doctors and
scientists.

4. DISCUSSION

4.1. Conclusions and future work

In this paper we discussed an integrative approach to bio-
medicine at large and to infectious diseases in particular.
We showed how in the understanding of processes ‘from
molecule to man’ Grid technology can play a crucial role.
In order to cover the fast time and spatial scales required to
infer information from a molecular (genomic) level up to
patient medical data, we need to apply multi-scale methods
where simulation, statistical analysis, data-mining is com-
bined in an efficient way. Moreover the required integra-
tive approach asks for distributed data collection (e.g. HIV
mutation databases, patient data, literature reports etc.) and
a virtual organization (physicians, hospital administration,
computational resources etc.). Also the access to and use
of large-scale computation (both high performance as well
as distributed) is essential since many of the computations
involved require near real-time response and are to com-
plex to run on a personal computer or PDA. Finally data
presentation is crucial in order to lower the barrier of actual
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usage by the physicians, here the Grid technology (server-
client approach) can play an important role.

Although many of the aspects discussed in this paper
have proven to work in concept, the complete integration
of the systems and the evaluation of day-to-day use is still
under development [17]. In addition each of the underly-
ing methods (Rule-based, statistical and CA based models)
remain topics of further studies. We will set up a use-base
with the system described running under various Euro-
pean Grid testbeds. The first testbed we will use is the so-
called DAS2, and eventually the CrossGrid testbed, which
supports specific features for interactive computation, an
essential ingredient for a medical decision support system.

The authors gratefully acknowledge Fan Chen and Ferdinand
Alimadhi for assistance in implementing the CA models and
the roaming PDA access. The Dutch Virtual Laboratory on e-
science project supported parts of the research presented here:
http://www.VL-e.nl.

GLOSSARY

Grid: Distributed architecture for solving computational
problems by making use of the resources from the mem-
bers of a virtual organization, treating them as a virtual
cluster.

CA: Cellular Automata, a discrete model studied in com-
putational theory and mathematics, which consists of
regular grid of cells, each in one of a finite number of
states.

Decision Support System: Computer-based system that
helps in the process of decision-making.

Web Interface: User interfaces for information available via
the web.

Proxy: Computer service which allows clients to make in-
direct network connections to other services.

HTTP: Hyper Text Transfer Protocol, a request/response
protocol for transferring information on the
Web.

HTML: Hyper Text Markup Language, a markup language
designed for the creation of web pages.

WML: Wireless Markup Language, a markup language
used in mobile phones.

J2ME: Java 2 Platform Micro Edition, a collection of Java
interfaces for embedded consumer appliances such as
cellular phones.

DAS2: Distributed ASCI Super Computer 2, a wide-area
distributed computer connecting 5 Dutch Universities.
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